Определение нерастворимого остатка цемента

ГОСТ 5382-91 Цементы и материалы цементного производства Методы химического анализа — 5. Определение нерастворимого остатка

Содержание материала

5. Определение нерастворимого остатка

5.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать соответственно ±0,05 и 0,06%.

5.2. Гравиметрический метод

5.2.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118 и раствор 1:9.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204.

Натрий углекислый по ГОСТ 83, раствор массовой концентрацией 50 г/куб.дм.

Гидроксид натрия по ГОСТ 4328, раствор массовой концентрацией 10 г/куб.дм.

Аммоний азотнокислый по ГОСТ 22867, раствор массовой концентрацией 20 г/куб.дм.

Аммоний хлористый по ГОСТ 3773, раствор массовой концентрацией 20 г/куб.дм.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Индикатор метиловый красный, спиртовый раствор массовой концентрацией 2 г/куб.дм, готовят по ГОСТ 4919.2.

Серебро азотнокислое по ГОСТ 1277, раствор массовой концентрацией 10 г/куб.дм.

Кислота азотная по ГОСТ 4461.

5.2.2. Проведение анализа

Навеску клинкера или цемента массой 1 г помещают в стакан вместимостью 150 куб.см, прибавляют при помешивании 25 куб.см воды и 5 куб.см соляной кислоты. Навеску тщательно растирают плоским концом стеклянной палочки и доводят объем раствора водой до 50 куб.см, накрывают стакан часовым стеклом, помещают на кипящую водяную баню и выдерживают на ней 15 мин. Затем жидкость фильтруют через фильтр «белая лента» и промывают остаток горячей водой температурой 60-70 град.С до исчезновения реакций на ион хлора (проба раствором азотнокислого серебра, подкисленного азотной кислотой). Остаток вместе с фильтром переносят в стакан, в котором проводилось разложение навески, и приливают при помешивании 30 куб.см раствора углекислого натрия, нагретого до температуры 80-90 град.С.

Стакан накрывают стеклом и нагревают на электрической плитке на асбестовой сетке 15 мин при температуре, близкой к кипению. Жидкость фильтруют через двойной фильтр «белая лента», остаток промывают 5-6 раз горячей водой температурой 60-70 град.С, затем смачивают 10-12 каплями раствора соляной кислоты и снова промывают до исчезновения реакции на ион хлора.

Остаток после отделения солянокислого фильтрата может быть обработан вместо углекислого натрия 100 куб.см горячего раствора гидроксида натрия при температуре близкой к точке кипения в течение 15 мин. Затем раствор нейтрализуют соляной кислотой по индикатору метиловому красному и добавляют 4-5 капель той же кислоты. Фильтруют и промывают остаток 10-12 раз горячим раствором азотнокислого или хлористого аммония.

После этого остаток с фильтром помещают в платиновый или фарфоровый тигель и прокаливают в муфельной печи при температуре 950-1000 град.С до постоянной массы.

1. При массовой доле в цементе нерастворимого остатка выше 0,4%, а также при анализе барийсодержащего портландцемента необходимо проверить его на чистоту отгонкой с фтористоводородной кислотой по п. 6.3.3. За значение нерастворимого остатка при этом берется массовая доля отогнанного оксида кремния. Если проверка на чистоту нерастворимого остатка не производилась, то полученное значение умножают на коэффициент 0,7.

2. Солянокислый фильтрат после отделения нерастворимого остатка может быть использован для определения в нем оксида серы (VI) по разд. 11.

5.2.3. Обработка результатов

Массовую долю нерастворимого остатка в процентах вычисляют по формуле

где

Источник

ГОСТ 5382-91 Цементы и материалы цементного производства. Методы химического анализа

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Цементы и материалы

Методы химического анализа

Государственного строительного комитета СССР

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Цементы и материалы

Методы химического анализа

Cements and materials for cement production.

Chemical analysis methods

Дата введения 01-07-91

Настоящий стандарт распространяется на цементы, клинкер, сырьевые смеси, минеральные добавки и сырье, применяемые в цементном производстве, и устанавливает нормы точности выполнения анализов химического состава, а также методы определения массовой доли влаги, потери при прокаливании, нерастворимого остатка, оксидов кремния, кальция (в том числе свободного), магния, железа, алюминия, титана, серы, калия, натрия, марганца, хрома, фосфора, бария, хлор-иона, фтор-иона (далее — элементов).

Допускается применение других методов анализа, метрологически аттестованных и соответствующих нормам точности настоящего стандарта. При этом ошибка воспроизводимости методов не должна превышать двух ошибок повторяемости, установленных в стандарте для соответствующих элементов.

Пояснения к терминам, применяемым в настоящем стандарте, приведены в приложении 1.

1. Общие требования

1.1. Отбор проб цемента — по СТ СЭВ 3477 , отбор проб других материалов — в соответствии с нормативно-технической или технологической документацией на эти материалы.

1.2 . Отобранную пробу материала сокращают несколькими последовательными квартованиями до 25 г и подсушивают. Твердые зернистые материалы предварительно измельчают в металлической ступке до полного прохождения через сито 05 по ГОСТ 6613, после чего магнитом удаляют попавшие в пробу металлические частицы. Не допускается обработка магнитом, если материал содержит магнитные минералы. Дальнейшим квартованием отбирают для анализа среднюю аналитическую пробу массой около 10 г, которую растирают в агатовой, яшмовой или корундовой ступке до состояния пудры (при контрольном просеивании проба должна полностью проходить через сито 008 по ГОСТ 6613).

Подготовленную пробу хранят в стеклянном бюксе с притертой крышкой для защиты от воздействия окружающей среды.

Перед взятием навески пробу высушивают в сушильном шкафу до постоянной массы при температуре (110±5)°С (за исключением случая, когда выполняют анализ по определению содержания влаги), охлаждают в эксикаторе и тщательно перемешивают. Масса считается постоянной, если разность двух последовательных взвешиваний после сушки не превышает 0,0004 г. Допускается производить анализ из воздушно-сухой навески с последующим пересчетом на сухую навеску. Массу сухой навески (m) в граммах вычисляют по формуле

(1)

где mo — масса навески материала в воздушно-сухом состоянии, г;

х — массовая доля влаги в материале, определенная по разд. 3, %.

1.3 . Для взвешивания навесок в зависимости от допускаемой погрешности взвешивания применяют лабораторные весы общего назначения 2-го класса точности (типа ВЛР-200 или аналогичные) или 4-го класса точности (типа ВЛТК-500 или аналогичные) по ГОСТ 24104.

Массу навесок анализируемых проб, осадков в гравиметрических методах, исходных веществ для приготовления стандартных растворов взвешивают с погрешностью не более 0,0002 г, навесок индикаторов для приготовления растворов и индикаторных смесей — с погрешностью не более 0,001 г, навесок реактивов для приготовления титрованных и вспомогательных растворов — с погрешностью не более 0,01 г, а плавней — с погрешностью не более 0,1 г.

1.4. Для проведения анализа применяют мерную лабораторную посуду не ниже 2-го класса точности по ГОСТ 20292 (бюретки, пипетки) и ГОСТ 1770 (цилиндры, мензурки, колбы), а также стеклянную посуду (стаканы, колбы конические, воронки конические, эксикаторы и др.) по ГОСТ 25336 , фарфоровую посуду и оборудование (тигли, лодочки, вставки для эксикаторов и др.) по ГОСТ 9147 , тигли и чашки из платины по ГОСТ 6563 , беззольные фильтры по соответствующей нормативно-технической документации (НТД).

Допускается применение аналогичной импортной посуды и материалов.

1.5. Для приготовления растворов и проведения анализов применяют реактивы не ниже ч.д.а., если не указана иная классификация, и дистиллированную воду, которая должна соответствовать ГОСТ 6709 в части требований к массовой доле ионов хлора и кальция.

1.6. Для прокаливания и сплавления навесок анализируемых проб с плавнями применяют муфельные лабораторные электропечи или печи аналогичного типа с температурой нагрева до 1100°С.

Для сушки материалов в воздушной среде используют сушильные шкафы с терморегулятором.

Для проведения анализов используют электрические плитки, песчаные и водяные бани, термометры, магнитные мешалки, титраторы, фотоэлектротитриметры, иономеры, pH-метры, пламенные фотометры, концентрационные фотоэлектроколориметры.

1.7. Применяемые средства анализа должны соответствовать требованиям НТД на них.

1.8 . Применяемые средства измерений должны быть поверены, а оборудование аттестовано по ГОСТ 8.326.

1.9. Концентрацию раствора выражают:

массовой долей в процентах, численно равной массе вещества в граммах в 100 г раствора;

массовой концентрацией в граммах на кубический дециметр или граммах на кубический сантиметр;

молярной концентрацией вещества в молях на кубический дециметр (М);

молярной концентрацией вещества эквивалента в молях на кубический дециметр (Н);

соотношением объемных частей (например, 1:2), где первые числа означают объемные части концентрированной кислоты или иного реактива, а вторые — объемные части воды (если не указан другой растворитель).

1.10. Допускается последовательное определение нескольких элементов из одной навески, переведенной в раствор, отбирая аликвотные части раствора. Схема систематического анализа цемента приведена в приложении 2.

1.11. Массовую концентрацию стандартных растворов, а также титранта по определяемому элементу (далее — титр) и соотношение объемов растворов (в титриметрических методах) рассчитывают как среднее арифметическое по результатам не менее трех параллельных определений. Расчет проводят до четвертого значащего знака.

1.12 . Для контроля погрешности результатов анализа используют изготовленные в соответствии с ГОСТ 8.531 и ГОСТ 8.315 и аттестованные в соответствии с ГОСТ 8.316 и ГОСТ 8.532 стандартные образцы состава вещества и материалов: государственные и стандартные отраслевые образцы (ГСО и ОСО), стандартные образцы предприятий (СОП). При этом результат анализа стандартного образца считают удовлетворительным, если среднее арифметическое двух параллельных определений отличается от аттестованного значения массовой доли определяемого элемента не более чем на 0,7 ошибки повторяемости, установленной в стандарте для соответствующего элемента.

1.13. Массовую долю элементов в анализируемой пробе определяют параллельно в двух навесках. За результат анализа принимают среднее арифметическое двух параллельных определений.

1.14. В качестве норм точности (метрологических характеристик) определение содержания элемента используют:

ошибку повторяемости, характеризующую возможные расхождения между результатами анализа одного образца, полученными одним лаборантом при использовании одного метода, одной и той же аппаратуры и реактивов и за возможно более короткий срок;

ошибку воспроизводимости, характеризующую возможные расхождения между результатами анализа одного образца, полученными при использовании одного метода, но в разных лабораториях, разными лаборантами и с использованием разной аппаратуры и реактивов;

расхождение между параллельными определениями.

1.14.1. Для вычисления ошибки повторяемости используют результаты параллельных определений массовой доли элементов, выполненных в данной лаборатории за последнее время. Используют не менее 20 пар результатов параллельных определений.

Среднюю квадратическую (стандартную) ошибку повторяемости ( S п ) вычисляют по формуле

, (2)

где — средний размах по всем парам параллельных определений.

Средний размах ( ) вычисляют по формуле

, (3)

где Ri — абсолютное значение разности между результатами i-й пары параллельных определений (размах);

n — общее число пар анализов ( n ³ 20)

Размах ( Ri ) вычисляют по формуле

Ri = , (4)

где — соответственно результаты 1-го и 2-го определения в i-й паре параллельных анализов.

1.14.2. Для вычисления ошибки воспроизводимости выполняют анализы одного тщательно усредненного образца в разных лабораториях или в одной, но разными лаборантами и с использованием разной аппаратуры и реактивов.

Ошибку воспроизводительности ( S в ) вычисляют по формуле

, (5)

где Xi — результат i-го отдельного анализа;

— средний результат анализа по всем данным;

n — число анализов( n ³ 20).

1.14.3. Для оценки правильности проведения единичного определения используют расхождение между двумя ( n = 2) параллельными определениями ( Rmax ) при доверительной вероятности 95%, которое вычисляют по формуле

(6)

Значения S п и Rmax для соответствующего метода зависят от массовой доли определяемого элемента и устанавливаются дифференцированно для конкретного интервала его содержания.

При попадании результатов параллельных определений в смежные интервалы содержания определяемого элемента Rmax для данного анализа принимают как среднее арифметическое значение величин расхождений, установленных для этих интервалов.

1.15. В случае, если соответствующей НТД установлено предельное значение для определяемого элемента, а полученный результат анализа отличается от этого предельного значения менее чем на величину ошибки повторяемости, следует произвести повторный анализ не менее чем из трех навесок. За окончательный результат принимают среднее арифметическое этих определений.

Если предельное значение установлено для суммы элементов, то отличие полученного результата определения этой суммы от предельного значения оценивают по сумме ошибок повторяемости, установленных для элементов, умноженных на соответствующую долю элементов в полученной сумме.

1.16. При текущем контроле материалов производства цемента допускается не выполнять параллельных определений для каждого анализа. В этом случае для контроля погрешности анализа параллельные определения (из двух навесок) следует выполнять не менее чем для 10% анализируемых проб.

1.17. При применении физико-химических методов анализа, например, фотоэлектроколориметрического, спектрофотометрического, атомно-эмиссионного, атомно-абсорбционного и др., требующих построения градуировочных графиков, графики строят в прямоугольных координатах. На оси абсцисс откладывают массу определяемого элемента (г, мг) или массовую долю (%), а на оси ординат — соответствующий аналитический сигнал (оптическую плотность, силу тока и др.).

Для построения графиков используют ГСО или ОСО состава веществ и материалов, из которых готовят градуировочные растворы. Способ и условия построения графиков указаны в соответствующих разделах стандарта.

График строят не менее чем по пяти точкам, полученным переведением в раствор различающихся по массе навесок стандартного образца. Точки равномерно распределяют по диапазону измерений. Минимальную и максимальную навески рассчитывают таким образом, чтобы обеспечить весь необходимый диапазон измерений. Каждую точку находят как среднее арифметическое значение не менее чем трех параллельных определений. Не допускается строить градуировочный график методом экстраполяции.

При использовании аликвотных частей массовую долю элемента ( X э ) в процентах вычисляют по формуле

, (7)

где m — масса навески образца, мг;

m 1 — масса элемента в аликвотной части раствора, определенная по градуировочному графику, мг;

V — общий объем исходного раствора, см 3 ;

V 1 — аликвотная часть исходного раствора, см 3 .

1.18. При выполнения анализа навеску анализируемой пробы, разведение и аликвотные части принимают такими же, как при изготовлении основного градуировочного раствора.

В случае необходимости изменения навески, разведения или аликвотной части по сравнению с условиями приготовления основного градуировочного раствора массовую долю элемента ( X э ) в процентах вычисляют по формуле

,( 8)

где Х — массовая доля элемента, найденная по градуировочному графику, %;

К1— отношение навески анализируемого образца к навеске основного градуировочного раствора;

К2 — отношение разведения основного градуировочного раствора к разведению анализируемого раствора;

К3— отношение аликвотной части анализируемого раствора к аликвотной части основного градуировочного раствора.

При прямом фотоколориметрическом анализе вводят поправку на изменение условий фотометрирования по сравнению с условиями градуировки. Для этого одновременно с анализируемым образцом измеряют оптическую плотность вновь приготовленного окрашенного градуировочного раствора. Измерение оптической плотности раствора выполняют с погрешностью не более 0,002. Поправку вносят с обратным знаком, то есть, если оптическая плотность градуировочного раствора увеличилась на несколько единиц, то это значение отнимают от оптической плотности анализируемого раствора и наоборот. После введения поправки находят по графику искомую массовую долю элемента.

1.19. При массовой работе, если имеется линейная зависимость между искомой массовой долей элемента X э и соответствующим аналитическим сигналом (оптической плотностью раствора, интенсивностью излучения, силой тока и т. п.), рекомендуется составлять калибровочное уравнение

(9)

где С и U — соответственно массовая доля определяемого элемента в основном градуировочном растворе (образце) и его аналитический сигнал;

U э — аналитический сигнал анализируемого элемента;

b — угловой коэффициент градуировочной прямой или калибровочный фактор, значение которого, учитывая близость калибровочного уравнения к уравнению математической регрессии, вычисляют по формулам:

(10)

где Xi и Yi — соответственно массовая доля определяемого элемента в i-м градуировочном растворе (образце) и его аналитический сигнал;

и — соответственно средние арифметические значения массовых долей определяемого элемента в n-м ряду градуировочных растворов (образцов) и их аналитических сигналов

(11)

где и — соответственно средние квадратические отклонения массовых долей и аналитических сигналов в использованном ряду градуировочных растворов (образцов).

Правильность составления (линейность) калибровочного уравнения проверяют, подставляя в него измеренные аналитические сигналы, полученные на градуировочных растворах (образцах).

1.20. Для удобства расчетов по градуировочным графикам или на основании данных, полученных из калибровочных уравнений, составляют соответствующие таблицы.

1.21. При использовании фотоколориметрического метода анализа для определения высоких концентраций элемента с целью уменьшения погрешности анализа проводят дифференциальное фотоколориметрирование, основанное на измерении оптической плотности анализируемого раствора относительно оптической плотности раствора стандартного образца с известной концентрацией определяемого элемента.

Обязательным условием этого метода является использование равноценных кювет, что проверяют получением одинаковой оптической плотности при измерении одного и того же окрашенного раствора в обеих кюветах.

1.22. Массовая доля определяемого элемента не должна отличаться от массовой доли этого же элемента в основном растворе при прямом фотометрировании более чем в 1,5 раза, а при дифференциальном — более чем в 1,2 раза. При нарушении этого условия меняют навеску, разведение или аликвотную часть анализируемого или стандартного образца.

1.23. Проверку градуировочных графиков по стандартным образцам проводят периодически, не реже одного раза в полугодие, а также после каждого ремонта используемых приборов.

1.24. При выполнении анализа рекомендуется параллельно проводить холостой опыт для учета загрязнений реактивов, дистиллированной воды и др.

1.25. Для осуществления текущего контроля производства цемента допускается применение рентгеноспектрального метода определения элементов, приведенного в приложении 3. При этом ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать значений, установленных в стандарте для соответствующих элементов. Аттестованные значения массовых долей элементов в СОП, используемых для построения градуировочного графика, рассчитывают на основании данных межлабораторной аттестации, выполненной лабораторией предприятия и головной (базовой) организацией по стандартизации.

2. Требования безопасности

2.1 . Лабораторные помещения, в которых выполняют работы по определению химического состава цемента и материалов цементного производства, должны быть оборудованы вентиляционными системами по ГОСТ 12.4.021.

2.2 . При эксплуатации электроустановок и электроприборов, используемых в процессе анализа, должны выполняться правила электробезопасности по ГОСТ 12.1.019.

2.3 . При работе с кислотами и щелочами должны быть соблюдены правила безопасности, действующие в химических лабораториях.

2.4 . При эксплуатации установок с ионизирующими источниками излучения (рентгеноспектральная аппаратура) следует руководствоваться требованиями норм радиационной безопасности НРБ-76/87 и основными санитарными правилами ОСП-72/87.

2.5 . При работе с горючими и взрывоопасными веществами должны соблюдаться требования безопасности в соответствии с ГОСТ 12.1.010.

2.6 . При работе с газовыми установками руководствуются ГОСТ 12.2.008 и правилами безопасности в газовом хозяйстве, утвержденными Госгортехнадзором СССР.

2.7 . При работе с вредными и ядовитыми веществами необходимо применять средства защиты по ГОСТ 12.4.004, индивидуальные средства защиты (респираторы по ГОСТ 12.4.011 или ГОСТ 12.4.028, резиновые перчатки по ГОСТ 12.4.103, одежду по ГОСТ 27654 и ГОСТ 29058).

3. Определение влаги

3.1. Ошибка повторяемости и расхождения между результатами параллельных определений не должны превышать соответственно ±0,07 и 0,10% при массовой доле влаги до 1,0%; ±0,10 и 0,15% при более высокой массовой доле влаги.

3.2. Гравиметрический метод

3.2.1. Средства анализа

Весы лабораторные общего назначения.

3.2.2. Проведение анализа

Навеску пробы массой 1 г помещают в предварительно высушенный до постоянной массы бюкс, ставят в сушильный шкаф нагретый до температуры (110±5)°С, сушат 1,5-2 ч. Вынимают из сушильного шкафа, охлаждают в эксикаторе и взвешивают. Перед взвешиванием крышку бюкса приоткрывают и быстро закрывают. Высушивание, охлаждение и взвешивание повторяют до тех пор, пока разница между двумя последующими взвешиваниями будет не более 0,0004 г. Если при повторном высушивании масса навески увеличится, то для расчета применяют массу, предшествующую ее увеличению.

Пробу гипса и гипсоглиноземистого цемента сушат при температуре 50-60 ° С.

3.2.3. Обработка результатов

Массовую долю влаги в процентах вычисляют по формуле

, (12)

где m 1 — масса навески с бюксом до сушки, г;

m 2 — масса навески с бюксом после сушки, г;

m 0 — масса навески пробы, г.

4. Определение потери массы при прокаливании

4.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать соответственно ±0,07 и 0,10% при потере массы при прокаливании до 1% (но не менее 0,5%); ±0,15 и 0,20% при более высокой потере массы при прокаливании (но не более 45%).

4.2. Гравиметрический метод

4.2.1. Средства анализа

Весы лабораторные общего назначения.

4.2.2. Проведение анализа

Навеску пробы массой 1 г, высушенную при температуре 105-115 ° С, помещают в предварительно прокаленный и взвешенный платиновый или фарфоровый тигель и нагревают в муфельной печи, где выдерживают 30 мин при температуре 950-1000 ° С, затем охлаждают в эксикаторе и взвешивают. Прокаливание повторяют при той же температуре до получения постоянной массы.

При определении потери массы при прокаливании шлакопортландцемента, шлака, золы навеску анализируемой пробы выдерживают в муфельной печи при температуре 950-1000 ° С в течение 1-2 мин и прокаливание повторяют до получения минимального значения массы.

В материалах, содержащих органические соединения, а также кристаллизационную воду, определение потери массы при прокаливании начинают при температуре 400-500 °С, прокаливая пробу до постоянной массы.

4.2.3. Обработка результатов

Потерю массы при прокаливании Хп.п.п. в процентах вычисляют по формуле

(13)

где m 1 — масса навески с тиглем до прокаливания, г;

m 2 — масса навески с тиглем после прокаливания, г;

m — масса навески, г.

5. Определение нерастворимого остатка

5.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать соответственно ±0,05 и 0,06%.

5.2. Гравиметрический метод

5.2.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118 и раствор 1:9.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204.

Натрий углекислый по ГОСТ 83, раствор массовой концентрацией 50 г/дм 3 .

Гидроксид натрия по ГОСТ 4328, раствор массовой концентрацией 10 г/дм 3 .

Аммоний азотнокислый по ГОСТ 22867, раствор массовой концентрацией 20 г/дм 3 .

Аммоний хлористый по ГОСТ 3773, раствор массовой концентрацией 20 г/дм 3 .

Спирт этиловый ректификованный технический по ГОСТ 18300.

Индикатор метиловый красный, спиртовый раствор массовой концентрацией 2 г/дм 3 , готовят по ГОСТ 4919.2.

Серебро азотнокислое по ГОСТ 1277, раствор массовой концентрацией 10 г/дм 3 .

Кислота азотная по ГОСТ 4461.

5.2.2. Проведение анализа

Навеску клинкера или цемента массой 1 г помещают в стакан вместимостью 150 см 3 , прибавляют при помешивании 25 см 3 воды и 5 см 3 соляной кислоты. Навеску тщательно растирают плоским концом стеклянной палочки и доводят объем раствора водой до 50 см 3 , накрывают стакан часовым стеклом, помещают на кипящую водяную баню и выдерживают на ней 15 мин. Затем жидкость фильтруют через фильтр «белая лента» и промывают остаток горячей водой температурой 60-70 ° С до исчезновения реакций на ион хлора (проба раствором азотнокислого серебра, подкисленного азотной кислотой). Остаток вместе с фильтром переносят в стакан, в котором проводилось разложение навески, и приливают при помешивании 30 см 3 раствора углекислого натрия, нагретого до температуры 80-90 ° С.

Стакан накрывают стеклом и нагревают на электрической плитке на асбестовой сетке 15 мин при температуре, близкой к кипению. Жидкость фильтруют через двойной фильтр «белая лента», остаток промывают 5-6 раз горячей водой температурой 60-70 ° С, затем смачивают 10-12 каплями раствора соляной кислоты и снова промывают до исчезновения реакции на ион хлора.

Остаток после отделения солянокислого фильтрата может быть обработан вместо углекислого натрия 100 см 3 горячего раствора гидроксида натрия при температуре близкой к точке кипения в течение 15 мин. Затем раствор нейтрализуют соляной кислотой по индикатору метиловому красному и добавляют 4-5 капель той же кислоты. Фильтруют и промывают остаток 10-12 раз горячим раствором азотнокислого или хлористого аммония.

После этого остаток с фильтром помещают в платиновый или фарфоровый тигель и прокаливают в муфельной печи при температуре 950-1000 ° С до постоянной массы.

1. При массовой доле в цементе нерастворимого остатка выше 0,4%, а также при анализе барийсодержащего портландцемента необходимо проверить его на чистоту отгонкой с фтористоводородной кислотой по п. 6.3.3. За значение нерастворимого остатка при этом берется массовая доля отогнанного оксида кремния. Если проверка на чистоту нерастворимого остатка не производилась, то полученное значение умножают на коэффициент 0,7.

2. Солянокислый фильтрат после отделения нерастворимого остатка может быть использован для определения в нем оксида серы (VI) по разд. 11.

5.2.3. Обработка результатов

Массовую долю нерастворимого остатка в процентах вычисляют по формуле

где — масса пустого тигля, г;

— масса тигля с прокаленным осадком, г;

— масса навески пробы, г.

6. Определение оксида кремния

6.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать значений, указанных в табл. 1.

Таблица 1

Массовая доля оксида кремния

6.2. Гравиметрический метод при массовой доле оксида кремния более 90 %

Метод основан на разложении навески пробы фтористоводородной кислотой и гравиметрическом определении оксида кремния по разности масс навески пробы и остатка после удаления фторида кремния.

6.2.1. Средства анализа

Весы лабораторные общего назначения.

Кислота азотная по ГОСТ 4461.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204.

Кислота соляная по ГОСТ 3118.

Смесь для сплавления по п 6.4.1.

6.2.2. Проведение анализа

Навеску пробы массой 0,5 г помещают в платиновый тигель, доведенный до постоянной массы, смачивают водой, прибавляют 10 капель серной кислоты, 10 см 3 фтористоводородной кислоты и помещают на песчаную баню или электроплитку со слабым нагревом. Выпаривают содержимое тигля до влажных солей, затем добавляют еще 5 см 3 фтористоводородной кислоты и выпаривают досуха до полного удаления паров серной кислоты. Затем остаток прокаливают в муфельной печи при температуре 900-1000 ° С в течение 10-15 мин, охлаждают в эксикаторе и взвешивают. Прокаливание и взвешивание повторяют до постоянной массы.

Остаток в тигле используют при систематическом анализе для определения оксидов кальция, магния, железа и алюминия. Для этого остаток сплавляют по п 6.4.2.1 со смесью для сплавления и растворяют в растворе соляной кислоты 1:3. При необходимости последующего определения оксида серы для разложения навески пробы вместо серной используют азотную кислоту.

6.2.3. Обработка результатов

Массовую долю оксида кремния в процентах вычисляют по формуле

где — масса тигля с навеской пробы, г;

— масса тигля с прокаленным остатком, г;

— масса навески пробы, г.

6.3. Гравиметрический метод при массовой доле оксида кремния до 90 %

Метод основан на коагуляции желатином кремнекислоты, выделившейся при разложении анализируемой пробы концентрированной соляной кислотой при нагревании, способствующем быстрому количественному переводу ее в нерастворимое состояние, последующем прокаливании выделенного осадка при температуре 1000 ° С и нахождении массовой доли оксида кремния по изменению массы выделенного осадка.

6.3.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204.

Кислота азотная по ГОСТ 4461 .

Желатин пищевой по ГОСТ 11293, раствор массовой концентрацией 10 г/дм 3 . 1 г желатина растворяют в 100 см 3 воды, нагретой до 70 ° С, раствор должен быть свежеприготовленным.

Натрий углекислый по ГОСТ 83.

Серебро азотнокислое по ГОСТ 1277, раствор массовой концентрацией 10 г/дм 3 .

Смесь для сплавления по п. 6.4.1.

6.3.2. Проведение анализа

Клинкер, портландцемент, шлакопортландцемент и другие материалы, поддающиеся разложению кислотами, переводят в раствор обработкой соляной кислотой. Для этого навеску пробы массой 0,5 г помещают в стакан вместимостью 50 см 3 и осторожно добавляют 10 см 3 соляной кислоты так, чтобы она стекла по стенке стакана, и накрывают часовым стеклом.

Для сырьевой смеси, пуццолановых цементов, кислых шлаков, кремнийсодержащих материалов, не поддающихся разложению кислотами, навеску пробы массой 0,5 г тщательно перемешивают в платиновом тигле с двукратным количеством углекислого натрия и предварительно до обработки соляной кислотой спекают в муфельной печи при температуре 950-1000 ° С в течение 3-7 мин. После охлаждения тигля спек растворяют 10-15 см 3 соляной кислоты, которую приливают в тигель небольшими порциями, количественно переносят раствор в стакан вместимостью 50 см 3 и накрывают часовым стеклом.

Независимо от способа разложения навески стакан погружают в нагретую до температуры 60-70 ° С водяную баню и выдерживают 10 мин. Затем прибавляют 10 см 3 желатина, энергично перемешивают в течение 1 мин, не вынимая стакан из водяной бани, и нагревают еще 10 мин. Раствор фильтруют в теплом виде через беззольный фильтр «белая лента», количественно перенося осадок на фильтр. Осадок промывают на фильтре 10-12 раз небольшими порциями горячей воды (температурой не выше 70 ° С), давая полностью стечь каждой порции и собирая фильтрат в стакан вместимостью 300 см 3 или мерную колбу вместимостью 250 см 3 .

Полученный фильтрат используют для последующих определений массовой доли оксидов кальция, железа, алюминия и др.

Осадок с фильтром переносят во взвешенный платиновый тигель, озоляют без воспламенения, прокаливают в муфельной печи при температуре 1000 ° С до постоянной массы, охлаждают в эксикаторе и взвешивают.

Полученный осадок кремнекислоты проверяют на чистоту. Для этого его смачивают 2-3 каплями воды, приливают под вытяжным шкафом 3-5 капель серной кислоты, 8-10 см 3 фтористоводородной кислоты и осторожно выпаривают на электрической плитке до прекращения выделения паров серной кислоты. Сухой остаток прокаливают в муфельной печи при температуре 900-1000 ° С в течение 3-5 мин, охлаждают в эксикаторе и взвешивают.

Затем остаток сплавляют по п. 6.4.2.1 со смесью для сплавления и присоединяют к полученному выше фильтрату.

6.3.3. Обработка результатов

Массовую долю оксида кремнию в процентах вычисляют по формуле

где — масса тигля с осадком оксида кремния до обработки кислотами, г;

— масса тигля с остатком после обработки кислотами, г;

— масса навески пробы, г.

6.4. Прямой фотоколориметрический метод при массовой доле оксида кремния до 25%

Метод основан на разложении навески пробы щелочным плавнем, кислотном растворении плава и на образовании желтого комплекса кремнемолибденовой гетерополикислоты с последующим его восстановлением до синего.

6.4.1. Средства анализа

Весы лабораторные общего назначения.

Натрий углекислый по ГОСТ 83.

Калий углекислый по ГОСТ 4221.

Калий азотнокислый по ГОСТ 4217.

Аммоний азотнокислый по ГОСТ 22867.

Натрий тетраборнокислый 10-водный по ГОСТ 4199, обезвоженный при температуре (400±20)°С, или бура по ГОСТ 8429.

Смесь для сплавления: натрий углекислый, натрий тетраборнокислый безводный смешивают в соотношении 2:1 или натрий углекислый, калий углекислый и безводный натрий тетраборнокислый смешивают в отношении 1:1:1. Для полноты окисления низковалентных форм железа, серы, марганца и т.п. в смесь для сплавления рекомендуется добавлять 0,5% по массе азотнокислого калия или 1% по массе азотнокислого аммония, обеспечивая равномерное распределение по всей массе плавня во избежание порчи платиновых тиглей.

Кислота соляная по ГОСТ 3118 и раствор 1:3.

Кислота аскорбиновая пищевая.

Кислота лимонная моногидрат и безводная по ГОСТ 3652.

Аммоний молибденовокислый по ГОСТ 3765, раствор массовой концентрацией 50 г/дм 3 или натрий молибденовокислый по ГОСТ 10931, раствор массовой концентрацией 50 г/дм 3 : 50 г молибденовокислого аммония или натрия растворяют в 500-600 см 3 воды при нагревании, не доводя до кипения. Полученный раствор фильтруют и доводят водой до 1 дм 3 . Раствор годен в течение месяца.

Натрий сернистокислый по ГОСТ 195, безводный.

Метол (4-метиламинофенол сульфат) марки А по ГОСТ 25664.

Раствор восстановителя 1: в 50 см 3 воды растворяют 1 г аскорбиновой кислоты и 5 г лимонной кислоты. Раствор фильтруют в мерную колбу вместимостью 100 см 3 , доливают до метки водой и перемешивают. Срок хранения раствора 4-5 сут.

Раствор восстановителя 2: последовательно растворяют в 500 см 3 воды, нагретой до температуры 40-50 ° С, 12 г сернистокислого натрия, 20 г метола и 12,5 г лимонной кислоты. Раствор фильтруют и доливают водой до 1 дм 3 . Срок хранения раствора в бутыли из темного стекла 2-3 недели.

6.4.2. Подготовка к анализу

6.4.2.1. Приготовление градуировочных растворов

В платиновые тигли помещают 5 навесок ОСО сырьевой смеси массой 0,05; 0,10; 0,15; 0,20; 0,25 г; массовую долю оксида кремния в них рассчитывают относительно навески 0,15 г, которую принимают за основную.

К каждой навеске прибавляют до 1,5 г смеси для сплавления, тщательно перемешивают и сплавляют в течение 5 мин при температуре 900-950 ° С.

Вращательным движением вынутого из муфеля тигля распределяют жидкий плав равномерно по его стенкам. Охлажденный тигель с застывшим плавом помещают в стакан, содержащий 100 см 3 холодного раствора соляной кислоты, и растворяют плав без нагревания при постоянном перемешивании вручную или на магнитной мешалке до полного его растворения. После растворения плавов тигли обмывают водой, а растворы количественно переносят в мерные колбы вместимостью 500 см 3 , доливают до метки водой и тщательно перемешивают. Такие растворы можно использовать в течение 2-3 месяцев для построения и поверки градуировочных графиков или калибровочных уравнений.

6.4.2.2. Построение градуировочного графика

В пять мерных колб вместимостью 100 см 3 отбирают соответственно по 5 см 3 каждого градуировочного раствора, добавляют около 25 см 3 воды, по 5 см 3 раствора молибдата аммония или натрия, перемешивают и дают постоять 10 мин для полноты образования желтого кремнемолибденового комплекса. Затем добавляют по 5 см 3 раствора восстановителя 1 либо по 20 см 3 раствора восстановителя 2, разбавляют водой до метки, тщательно перемешивают и после 15 мин выстаивания и получения устойчивого синего комплекса полученные растворы фотометрируют относительно дистиллированной воды, используя светофильтры с максимумом светопропускания при длине волны 600-750 нм (красный) или 815 нм (инфракрасный) и кювету с толщиной поглощающего свет слоя 10 мм.

По полученным результатам определений оптической плотности и известной концентрации оксида кремния в фотометрируемых объемах строят градуировочный график или составляют калибровочное уравнение.

6.4.3. Проведение анализа

Навеску пробы, выбранную в зависимости от содержания оксида кремния в соответствии с табл. 2, сплавляют с 1,.5 г смеси для сплавления в платиновом тигле, накрытом крышкой, в муфельной печи при температуре 900-950 ° С в течение 5 мин. Плав распределяют по стенкам тигля, вращая его щипцами. Остывший тигель со сплавом опускают в стакан вместимостью 150 см 3 , в который в зависимости от последующего разведения предварительно налито 40; 50 или 100 куб см холодного раствора соляной кислоты 1:3.

Массовая доля оксида кремния, %

Масса навески, г

Объем аликвотной части, см 3

Разведение, см 3

Растворяют плав при постоянном перемешивании, как изложено в п. 6.4.2.1. Полученный раствор количественно переносят в мерную колбу и разбавляют водой до объема в соответствии с табл. 2. Полученный раствор используют при систематическом анализе.

Для определения массовой доли оксида кремния в две мерные колбы вместимостью 100 см 3 отбирают: в одну — аликвотную часть анализируемого раствора в соответствии с табл. 2; в другую — 5 см 3 основного градуировочного раствора, приготовленного по п.6.4.2.1. Затем в обе колбы добавляют около 25 см 3 воды, по 5 см 3 молибдата аммония или натрия. Дальнейшие операции — по п. 6.4.2.2.

6.4.4. Обработка результатов

Перед вычислением массовой доли оксида кремния вводят поправку на изменение условий фотометрирования в соответствии с п. 1.18.

Массу оксида кремния в миллиграммах находят по градуировочному графику и вычисляют искомую массовую долю элемента по формуле ( 7).

Непосредственно массовую долю оксида кремния в процентах определяют по градуировочному графику, построенному в координатах «оптическая плотность — массовая доля элемента в процентах» или находят по калибровочному уравнению. При отступлении от условий градуировки в части изменения навески, аликвотной части или разведения расчет проводят по формуле ( 8).

6.5. Дифференциальный фотоколориметрический метод при массовой доле оксида кремния от 40 до 80 %

Метод основан на измерении оптической плотности синего кремнемолибденового комплекса анализируемого раствора по отношению к обусловленной оптической плотности аналогичным образом полученного раствора стандартного образца.

6.5.1. Средства анализа — по п. 6.4.1.

6.5.2. Подготовка к анализу

6.5.2.1. Приготовление градуировочных растворов

В платиновые тигли помещают пять навесок ОСО глины массой 0,08; 0,09; 0,10; 0,11; 0,12 г; массовую долю оксида кремния в них рассчитывают относительно навески 0,10 г, которую принимают за основную.

К каждой навеске прибавляют по 2 г смеси для сплавления, тщательно перемешивают и сплавляют в течение 15-20 мин, остальные операции проводят аналогично п. 6.4.2.1.

6.5.2.2. Построение градуировочного графика

В пять мерных колб вместимостью 100 см 3 приливают соответственно по 5 см 3 каждого градуировочного раствора и воды до 50 см 3 . Дальнейшие операции — по п. 6.4.2.2, увеличивая время образования желтого комплекса до 20 мин.

Фотометрирование проводят относительно основного градуировочного раствора. При этом оптический ноль фотометрического прибора по шкале поглощения в зависимости от чувствительности устанавливают по этому раствору в интервале оптической плотности 0,250-0,300.

По полученным результатам определений относительной оптической плотности и известной концентрации оксида кремния в фотометрируемых объемах строят градуировочный график или составляют калибровочное уравнение.

6.5.3. Проведение анализа

Навеску пробы, выбранную в зависимости от содержания оксида кремния в соответствии с табл. 3, сплавляют с 2 г смеси для сплавления в накрытом крышкой платиновом тигле в муфельной печи при температуре 900-950 ° С в течение 15-20 мин. Остальные операции выполняют по п. 6.4.2.1.

Таблица 3

Массовая доля оксида кремния, %

Масса навески, г

Св. 40 до 50 включ.

Для определения массовой доли оксида кремния в две мерные колбы вместимостью 100 см 3 отбирают: в одну -5 см 3 анализируемого раствора; в другую -5 см 3 основного градуировочного раствора, приготовленного по п. 6.5.2.1. Затем в обе колбы добавляют воды до 50 см 3 . Дальнейшие операции -по п. 6.5.2.2.

6.5.4. Обработка результатов — по п. 6.4.4 (без введения поправки).

6.6. Дифференциальный фотоколориметри­ческий метод при массовой доле оксида кремния от 25 до 40%

Определение массовой доли оксида кремния проводят в соответствии с п. 6.5. При этом для построения градуировочного графика используют градуировочные растворы, приготовление из ОСО сырьевой смеси, увеличив в два раза массы навесок (п. 6.5.2.1). За основную принимают навеску массой 0,20 г; относительно нее ведут расчеты концентрацией градуировочных растворов.

7. Определение оксидов кальция и магния

7.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать значений, указанных в табл. 4 и 5.

Массовая доля оксида кальция

От 1 до 10 включ.

Массовая доля оксида кальция

7.2. Комплексонометрический метод

Метод основан на реакции взаимодействия катионов кальция и магния с трилоном Б (комплексоном III) с образованием малодиссоциированных соединений в присутствии металлоиндикаторов в щелочном растворе, образующих окрашенные комплексы, разрушающиеся при дальнейшем титровании трилоном Б.

Конечную точку титрования визуально или фотометрической индикацией определяют по исчезновению из раствора определяемого катиона, который связывается с трилоном Б, и выделению свободного индикатора, имеющего иную окраску, чем комплекс определяемого катиона с данным индикатором.

7.2.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118 и раствор 1:3.

Аммиак водный по ГОСТ 3760 и раствор 1:1,5.

Аммоний хлористый по ГОСТ 3773.

Гидроксиламина гидрохлорид по ГОСТ 5456, раствор массовой концентрацией 50 г/дм 3 .

Калия гидроксид по ГОСТ 24363, раствор массовой концентрацией 200 г/дм 3 (хранят в полиэтиленовой посуде).

Калий хлористый по ГОСТ 4234.

Уротропин технический по ГОСТ 1381, раствор массовой концентрацией 100 г/дм 3 .

Трилон Б по ГОСТ 10652.

Раствор трилона Б № 1 молярной концентрацией 0,05 моль/дм 3 (0,05 М): 18,62 г трилона Б растворяют в воде при нагревании до температуры 70-80 ° С, раствор охлаждают, фильтруют в мерную колбу вместимостью 1 дм 3 и доводят до метки водой.

Раствор трилона Б № 2 молярной концентрацией 0,005 моль/дм 3 (0,005 М) : 1,8 г трилона Б растворяют в воде при нагревании до температуры 70-80 ° С, раствор охлаждают, фильтруют в мерную колбу вместимостью 1 дм 3 и доводят до метки водой.

Магний серно-кислый 7-водный по ГОСТ 4523 или стандарт-титр, растворы молярной концентрацией 0,1 моль/дм 3 (0,1 М) и 0,01 моль/дм 3 (0,01 М).

Спирт этиловый ректификованный технический по ГОСТ 18300.

Флуорексон (индикатор) по ТУ 6-09-1368, сухая смесь: 1 г индикатора смешивают с 99 г хлористого калия, растирают в ступке и хранят в банке с крышкой.

Тимолфталеин (индикатор) по ТУ 6-09-1887, сухая смесь: 1 г индикатора смешивают с 99 г хлористого калия, растирают в ступке и хранят в банке с крышкой.

Метиловый оранжевый (индикатор): 0,1 г индикатора растворяют в 100 см 3 воды.

Фенолфталеин (индикатор) по ТУ 6-09-5360: 0,2 г индикатора растворяют в 100 см 3 этилового спирта.

Бром крезоловый пурпуровый (индикатор) по ТУ 6-09-4530: 0,1 г индикатора растворяют в 100 см 3 этилового спирта.

Натрий фтористый по ГОСТ 4463.

Триэтаноламин по ТУ 6-09-2448.

Маскирующий реагент МР-1: раствор триэтаноламина массовой концентрацией 50 г/дм 3 , содержащий 5 г фтористого натрия.

Маскирующий реагент МР-2: раствор триэтаноламина массовой концентрацией 10 г/дм 3 , содержащий 2 г фтористого натрия.

Аммиачный буферный раствор: 70 г хлористого аммония растворяют в 200 см 3 воды, фильтруют, прибавляют 570 см 3 водного аммиака, доливают до 1 дм 3 водой, pH этого раствора соответствует 10.

Хром темно-синий (индикатор) по ТУ 6-09-3970, раствор массовой концентрацией 5 г/дм 3 .

Тимолфталексон (индикатор) по ТУ 6-09-07-996, раствор массовой концентрацией 5 г/дм 3 .

Эриохром черный Т (индикатор) по ТУ 6-09-1760: 1 г индикатора смешивают с 99 г хлористого калия, растирают в ступке и хранят в банке с крышкой.

Смесь для сплавления по п. 6.4.1.

7.2.2. Подготовка к анализу

7.2.2.1. Установка титра 0,05 и 0,005 М растворов трилона Б по оксиду кальция

Навеску стандартного образца состава карбоната кальция массой 5 г растворяют в 30-40 см 3 раствора соляной кислоты 1:3 при нагревании, кипятят 3-5 мин для удаления углекислоты, переводят в мерную колбу вместимостью 1 дм 3 , охлаждают и доливают до метки водой. В три конические колбы вместимостью 250-300 см 3 спускают из бюретки по 20 см 3 приготовленного раствора хлористого кальция, разбавляют водой до 100 см 3 , затем приливают из бюретки 10-15 см 3 раствора трилона Б № 1, 1-5 капель брома крезолового пурпурового, 15 см 3 раствора гидроксида калия, на кончике шпателя 0,04-0,05 г индикатора флуорексона и титруют раствором трилона Б № 1 до перехода флуоресцирующей малиново-зеленой окраски в устойчивую малиновую. Титрование проводят на темном фоне.

Титр 0,05 М раствора трилона Б по оксиду кальция в граммах на кубический сантиметр вычисляют по формуле

где 20 -объем аликвотной части раствора стандартного образца, взятый для титрования, см 3 ;

5 -масса навески стандартного образца, г;

-массовая доля оксида кальция в стандартном образце, указанная в свидетельстве, %;

-среднее арифметическое значение объема 0,05 М раствора трилона Б, пошедшего на титрование (с учетом прибавления перед титрованием в раствор стандартного образца), см 3 ;

1000 -объем раствора стандартного образца, см 3 .

Навесу стандартного образца состава карбоната кальция массой 0,1 г растворяют в 100 см 3 раствора соляной кислоты 1:3 при нагревании, кипятят 3-5 мин для удаления углекислоты, переводят в мерную колбу вместимостью 500 см 3 , охлаждают и доливают до метки водой. В три стакана вместимостью 150 см 3 отбирают по 50 см 3 приготовленного раствора хлористого кальция, приливают из бюретки 10-15 см 3 раствора трилона Б № 2, 15 см 3 гидроксида калия, добавляют 7 капель индикатора хрома темно-синего. В стакан опускают магнитный элемент, помещают стакан в гнездо фотоэлектротитриметра, включают прибор и мотор электромагнитной мешалки, перемешивают раствор 1 мин и титруют раствором трилона Б № 2 до остановки стрелки микроамперметра, что соответствует эквивалентной точке.

Таким же образом проводят титрование холостого раствора, состоящего из 50 см 3 воды, 2 см 3 раствора соляной кислоты 1:3 и 0,1 г смеси для сплавления.

Титр 0,005 М раствора трилона Б по оксиду кальция в граммах на кубический сантиметр вычисляют по формуле

где 50 -объем аликвотной части раствора стандартного образца, взятый для титрования, см3;

0,1 -масса навески стандартного образца, г;

-массовая доля оксида кальция в стандартном образце, указанная в свидетельстве, %;

-среднее арифметическое значение объема 0,005 М раствора трилона Б, пошедшего на титрование (с учетом прибавления перед титрованием в раствор стандартного образца), см 3 ;

-объем 0,005 М раствора трилона Б, пошедший на титрование холостого раствора, см 3 ;

500 -объем раствора стандартного образца, см 3 .

7.2.2.2. Установка титра 0,05 и 0,005 М растворов трилона Б по оксиду магния

В три конические колбы вместимостью 250-300 см 3 спускают из бюретки по 20 см 3 0,1 М раствора серно-кислого магния, разбавляют водой до 100 см 3 , нагревают до 60-70 ° С, приливают по 15 см 3 аммиачного буферного раствора и добавляют 5-7 капель индикатора хрома темно-синего или эрихрома черного Т (0,04-0,05 г) и титруют раствором трилона Б № 1 при интенсивном перемешивании до перехода красной окраски соответственно в устойчивую сиреневую или синюю с зеленым оттенком. При использовании 5-7 капель индикатора тимолфталексона наблюдают переход окраски из синей в светло-серую.

Титр 0,05 М раствора трилона Б по оксиду магния в граммах на кубический сантиметр вычисляют по формуле

где 20 -объем аликвотной части 0,1 М раствора серно-кислого магния, взятый для титрования, см 3 ;

0,002016 -масса оксида магния, соответствующая 1 см 3 раствора трилона Б № 1, г/см 3 ;

-среднее арифметическое значение объема 0,05 М раствора трилона Б, пошедшего на титрование, см 3 .

В три стакана вместимостью 150 см 3 помещают по 20 см 3 0,01 М раствора серно-кислого магния, приливают 50 см 3 воды, 15 см 3 аммиачного буферного раствора. В стакан опускают магнитный элемент, помещают стакан в гнездо фотоэлектротитриметра, включают прибор и мотор электромагнитной мешалки, перемешивают раствор 1 мин, добавляют 7 капель индикатора хрома темно-синего и титруют раствором трилона Б № 2 до остановки стрелки микроамперметра, что соответствует эквивалентной точке.

Таким же образом проводят титрование холостого раствора, состоящего из 50 см 3 воды.

Титр 0,005 М раствора трилона Б по оксиду магния в граммах на кубический сантиметр вычисляют по формуле

где 20 -объем аликвотной части 0,01 М раствора серно-кислого магния, взятый для титрования, см 3 ;

0,0002016 ¾ масса оксида магния, соответствующая 1 см 3 раствора трилона Б № 2, г/см 3 ;

-среднее арифметическое значение объема 0,005 М раствора трилона Б, пошедшего на титрование, см 3 .

-объем 0,005 М раствора трилона Б, пошедший на титрование холостого раствора, см 3 .

7.2.3. Проведение анализа

7.2.3.1. Титрование оксида кальция с отделением гидроксидов железа и алюминия

Навеску цемента, клинкера, сырьевой смеси и других материалов массой 0,5 г сплавляют с 2 г смеси для сплавления при температуре 950-1000 ° С. Плав растворяют в 60-70 см 3 раствора соляной кислоты 1:3 и переводят в мерную колбу вместимостью 250 см 3 .

Из мерной колбы или от фильтрата после отделения оксида кремния по п. 6.3.2 отбирают аликвотную часть объемом 50 см 3 в стакан вместимостью 150-200 см 3 . Раствор нагревают до кипения, приливают по каплям раствор аммиака до изменения окраски бумажки конго из синей в красную, прибавляют раствор соляной кислоты 1:3 до перехода красной окраски бумажки конго в сиреневую, затем добавляют 10 см 3 раствора уротропина, выдерживают 5-7 мин при температуре 70-80 ° С до просветления раствора над выделившимся осадком гидроксидов железа и алюминия и фильтруют в колбу вместимостью 500-750 см 3 , промывают осадок на фильтре горячей водой до исчезновения реакции на хлор-ион с азотно-кислым серебром. Полученный фильтрат объемом 250-300 см 3 охлаждают.

При отсутствии уротропина гидроксиды железа и алюминия можно отделить только раствором аммиака, добавляя его к анализируемому раствору до слабого запаха. Затем фильтруют раствор и промывают осадок, как описано выше.

К фильтрату прибавляют две трети предполагаемого объема 0,05 М раствора трилона Б, 100 см 3 раствора гидроксида калия, 0,04-0,05 г сухой смеси индикатора флуорексона и дотитровывают раствором трилона Б № 1 визуально до изменения окраски раствора, как изложено в п. 7.2.2.1.

1. При анализе шлаков и шлакопортландцемента для предотвращения окисления оксида марганца (II) в щелочном растворе кислородом воздуха перед титрованием оксида кальция приливают 1-3 см 3 гидрохлорида гидроксиламина, после чего добавляют все необходимые реактивы.

2. При анализе материалов с предполагаемой массовой долей оксида кальция менее 20% (глины и др.) титрование производят, не прибавляя предварительно раствор трилона Б к анализируемому раствору.

7.2.3.2. Титрование оксида кальция без отделения гидроксидов железа и алюминия

Навеску пробы массой 0,1 г сплавляют с 1 г смеси до сплавления при температуре 950-1000 ° С и растворяют плав в 30-40 см 3 раствора соляной кислоты 1:3. Полученный раствор количественно переносят в колбу вместимостью 500-750 см 3 , тщательно обмыв тигель.

Определение может быть выполнено также из аликвотной части раствора объемом 50 см 3 после отделения кремнекислоты по п. 6.3.3, или из оставшейся части растворов в колбе вместимостью 250 см 3 (п. 7.2.3.1), или из аликвотной части раствора объемом 250 см 3 , приготовленного для фотометрического анализа по п. 6.4.3.

В любом случае при визуальном титровании перед добавлением гидроксида калия в раствор вводят 10 см 3 МР-1 и далее анализ ведут, как описано в п. 7.2.3.1.

Титрование оксида кальция в присутствии замаскированных гидроксидов железа и алюминия позволяет выполнить определение из анализируемого раствора пробы, приготовленного для фотометрического определения основных оксидов по п. 6.4.3, используя аликвотную часть объемом 50 или 100 см 3 при общем разведении 500 см 3 . Индикацию конечной точки титрования осуществляют с использованием фотоэлектротитриметра. Титруют 0,005 М раствором трилона Б. Перед добавлением гидроксида калия к анализируемому раствору прибавляют 10 см 3 МР-2. Дальнейшие операции — по п. 7.2.2.1.

7.2.3.3. Титрование суммы оксидов кальция и магния с отделением гидроксидов железа и алюминия

Для анализа берут аликвотную часть объемом 50 см 3 или из мерной колбы вместимостью 250 см 3 (п. 7.2.3.1), или из колбы после отделения кремнекислоты по п. 6.3.3, или из колбы после растворения отдельно взятой навески пробы массой 0,1 г по п. 7.2.3.2. Гидроксиды железа и алюминия отделяют по п. 7.2.3.1. К полученному фильтрату добавляют 50 см 3 аммиачного буферного раствора, 5-7 капель индикатора хрома темно-синего или 0,1 г индикатора эрихрома черного Т и титруют 0,05 М раствором трилона Б до перехода красной окраски соответственно в устойчивую сиреневую или синюю с зеленым оттенком.

7.2.3.4. Титрование суммы оксидов кальция и магния без отделения гидроксидов железа и алюминия

При визуальном титровании аликвотную часть раствора, полученного по п. 7.2.3.1 или п. 7.2.3.2, объемом 50 или 100 см 3 отбирают в коническую колбу вместимостью 500-750 см 3 , разбавляют до 300 см 3 водой, прибавляют 10 см 3 МР-1, одну каплю индикатора метилового оранжевого и 7 см 3 раствора гидроксида калия, затем 20 см 3 аммиачного буферного раствора и 10 капель индикатора тимолфталексона. Темно-синий раствор титруют 0,005 М раствором трилона Б до неизменяющейся желтовато-серой окраски.

При использовании фототитриметра аликвотную часть объемом 50 см 3 анализируемого раствора помещают в стакан вместимостью 150 см 3 , добавляют 10 см 3 раствора МР-2, 5 капель индикатора фенолфталеина и 7 см 3 раствора гидроксида калия, затем прибавляют 20 см 3 аммиачного буферного раствора (появляется розовая окраска), добавляют 7 капель индикатора тимолфталексона. Полученный раствор титруют 0,005 М раствором трилона Б на фототитриметре до остановки стрелки микроамперметра.

Аналогично титруют 50 см 3 холостого раствора.

Примечание. При анализе материалов, содержащих соединения марганца, для устранения помех от его четырехвалентного гидроксида в кислый раствор титруемой аликвотной части добавляют 5 см 3 раствора гидрохлорида гидроксиламина, но при этом гидроксид марганца титруется вместе с суммой оксидов кальция и магния.

7.2.4. Обработка результатов

Массовую долю оксида кальция в процентах вычисляют по формуле

где — объем 0,05 М раствора трилона Б, пошедший на титрование, см 3 ;

— масса навески пробы, г

где — объем 0,005 М раствора трилона Б, пошедший на титрование, см 3 ;

— объем 0,005 М раствора трилона Б, пошедший на титрование холостого раствора, см 3 ;

— масса навески пробы, г

Массовую долю оксида магния в процентах вычисляют по формуле

где — объем 0,05 М раствора трилона Б, пошедший на титрование суммы оксидов кальция и магния, см 3 ;

— объем 0,05 М раствора трилона Б, пошедший на титрование, см 3 ;

— масса навески пробы, г

где — объем 0,005 М раствора трилона Б, пошедший на титрование суммы оксидов кальция и магния, см 3 ;

— объем 0,005 М раствора трилона Б, пошедший на титрование суммы оксидов кальция и магния в холостом растворе, см 3 ;

— объем 0,005 М раствора трилона Б, пошедший на титрование оксида кальция, см 3 ;

— объем 0,005 М раствора трилона Б, пошедший на титрование оксида кальция в холостом растворе, см 3 ;

— масса навески пробы, г;

— массовая доля оксидов марганца, %.

7.3. Фотоколориметрический метод определения оксида магния

Метод основан на образовании в щелочной среде окрашенного в оранжево-красный цвет адсорбционного соединения титанового желтого с гидроксидом магния.

7.3.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118, раствор 1:3.

Натрия гидроксид по ГОСТ 4328, раствор массовой концентрацией 100 г/дм 3 .

Спирт этиловый ректификованный технический по ГОСТ 18300.

Метиловый красный (индикатор):0,2 г индикатора растворяют в 100 см 3 этилового спирта.

Натрий фтористый по ГОСТ 4463.

Смесь для сплавления по п. 6.4.1.

Маскирующий реагент МР-2 по п. 7.2.1.

Крахмал растворимый по ГОСТ 10163::0,5 г крахмала смешивают с 100 см 3 кипящей воды, кипятят 5 мин, фильтруют и охлаждают.

Гидроксиламина гидрохлорид по ГОСТ 5456, раствор массой концентрацией 0,1 г/см 3 , нейтрализованный раствором гидроксида натрия массовой концентрацией 100 г/дм 3 по универсальной индикаторной бумаге.

Реагент желтый титановый по ТУ 6-09-07-979: 0,2 г реагента растворяют в 100 см 3 воды, смешивают с раствором гидрохлорида гидроксиламина, нейтрализованным гидроксидом натрия. Смесь фильтруют в мерную колбу вместимостью 1 дм 3 , разбавляют до метки водой, перемешивают и оставляют на сутки. Раствор годен в течение месяца.

Раствор хлористого кальция: 2 г стандартного образца состава известняка или карбоната кальция растворяют в 50 см 3 раствора соляной кислоты 1:3 и разбавляют водой до 250 см 3 .

7.3.2. Подготовка к анализу

7.3.2.1. Приготовление градуировочных и холостого растворов

Используют градуировочные растворы, приготовленные по п. 6.4.2.1, приняв навеску ОСО массой 0,15 г за основную, и рассчитывают относительно нее массовую долю оксида магния в процентах во всех остальных навесках.

Для приготовления холостого раствора 1 г смеси для сплавления растворяют в 100 см 3 раствора соляной кислоты 1:3 и разбавляют водой до 500 см 3 .

7.3.2.2. Построение градуировочного графика

Используя шесть мерных колб вместимостью 100 см 3 . В первую колбу приливают 25 см 3 холостого раствора, во все остальные по 25 см 3 градуировочных растворов. В первую и вторую колбы добавляют по 1 см 3 раствора хлористого кальция. Во все шесть колб добавляют по 30 см 3 воды, 5 см 3 МР-2, затем по 5 см 3 раствора крахмала, по 10 см 3 реагента титанового желтого и одну каплю индикатора метилового красного. Растворы нейтрализуют раствором гидроксида натрия до лимонно-желтого цвета и добавляют его избыток объемом 10 см 3 , разбавляют водой до метки, перемешивают, выдерживают 5 мин и фотометрируют относительно дистиллированной воды, используя зеленый светофильтр с областью светопропускания при длине волны 530-536 нм и кювету с толщиной поглощающего свет слоя 20 мм.

По полученным результатам определений оптической плотности и известной концентрации оксида магния в фотометрируемых объемах строят градуировочный график или составляют калибровочное уравнение.

7.3.3. Проведение анализа

В две мерные колбы вместимостью 100 см 3 отбирают: в одну -25 см 3 анализируемого раствора по п. 7.2.3.1 или п. 6.4.3; в другую -25 см 3 близкого по массовой доле оксида магния к анализируемому градуировочного раствора, приготовленного по п. 7.3.2.1. Затем в обе колбы добавляют 30 см 3 воды, вводят 5 см 3 МР-2. Дальнейшие операции -по п. 7.3.2.2.

При предполагаемой массовой доле оксида магния в анализируемой пробе менее 1 или более 3% определение выполняют либо из отдельной навески, либо варьируют аликвотной частью анализируемого раствора.

При предполагаемой массовой доле оксида кальция в анализируемой пробе менее 10% к отобранной аликвотной части исходного раствора добавляют 1 см 3 раствора хлористого кальция.

7.3.4. Обработка результатов

Перед вычислением массовой доли оксида магния вводят поправку на изменение условий фотометрирования в соответствии с п. 1.18.

Массу оксида кремния в миллиграммах находят по градуировочному графику и вычисляют искомую массовую долю элемента по формуле ( 7).

Непосредственно массовую долю оксида магния в процентах определяют по градуировочному графику, построенному в координатах «оптическая плотность -массовая доля элемента в процентах» или находят по калибровочному уравнению. При отступлении от условий градуировки в части изменения навески, аликвотной части или разведения расчет проводят по формуле (8).

8. Определение оксидов железа (III), (II)

8.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать значений, указанных в табл. 6.

Таблица 6

Массовая доля оксида железа (III), (II)

8.2. Комплексонометрический метод при массовой доле оксида железа (III), (II) более 1,0%

Метод основан на образовании комплексного соединения трехвалентного железа с сульфосалициловой кислотой и разрушении его трилоном Б при pH раствора 1-2 с образованием слабоокрашенного комплекса трилоната железа (III).

Присутствие в растворе оксидов кремния, алюминия, кальция и магния не мешают определению.

8.2.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118 и раствор 1:3.

Кислота азотная по ГОСТ 4461 .

Аммиак водный по ГОСТ 3760, раствор 1:1,5.

Трилон Б по ГОСТ 10652, раствор молярной концентрацией 0,05 моль/дм 3 (0,05 М):18,62 г трилона Б растворяют в воде при слабом нагревании, охлаждают раствор, фильтруют в мерную колбу вместимостью 1 дм 3 и доводят до метки водой.

Натрия гидроксид по ГОСТ 4328 или калия гидроксид по ГОСТ 24363, раствор массовой концентрацией 200 г/дм 3 .

Кислота сульфосалициловая 2-водная по ГОСТ 4478.

Сульфосалициловый индикатор: 10 г сульфосалициловой кислоты растворяют в 50 см 3 воды, нейтрализуют раствором гидроксида натрия или калия до изменения окраски индикаторной бумаги «конго» красной на сиреневую и доливают до 100 см 3 водой.

Смесь для сплавления по п. 6.4.1.

Железо треххлористое 6-водное по ГОСТ 4147 или железоаммонийные квасцы, раствор молярной концентрацией 0,05 моль/дм 3 (0,05 М):13,5 г треххлористого железа или 24,1 г железоаммонийных квасцов растворяют в 300 см 3 воды, фильтруют в мерную колбу вместимостью 1 дм 3 , добавляют 8-10 см 3 соляной кислоты, доливают до метки водой и тщательно перемешивают.

Аммоний азотно-кислый по ГОСТ 22867, раствор с массовой концентрацией 20 г/дм 3 .

Спирт этиловый ректификованный технический по ГОСТ 18300.

Метиловый красный (индикатор): 0,2 г индикатора растворяют в 100 см 3 этилового спирта.

8.2.2. Подготовка к анализу

8.2.2.1. Установка титра 0,05 М раствора треххлористого железа по оксиду железа (III)

Установку титра проводят гравиметрическим методом в параллельных пробах (не менее трех). Для этого из раствора треххлористого железа, приготовленного по п. 8.2.1, отбирают аликвотную часть объемом 25 см 3 , помещают ее в стакан вместимостью 100-150 см 3 , разбавляют водой до 50-60 см 3 , нагревают на плитке примерно до температуры 70-80 ° С и осаждают гидроксид железа (III), прибавляя по каплям раствор аммиака в присутствии 3-4 капель индикатора метилового красного до пожелтения раствора над осадком. Затем стакан выдерживают в теплом месте 3-5 мин и отфильтровывают осадок гидроксида железа (III) через фильтр «красная лента» и промывают его на фильтре 10-12 раз горячим раствором азотно-кислого аммония до исчезновения реакции на ион хлора. Осадок вместе с фильтром переносят в тигель, подсушивают и прокаливают в муфельной печи при температуре 1000 ° С в течение 20-25 мин до постоянной массы. Титр раствора треххлористого железа в граммах на кубический сантиметр вычисляют по формуле

где -среднее арифметическое значение массы прокаленного осадка, г;

25 -аликвотная часть треххлористого железа, см 3 .

8.2.2.2. Установка титра 0,05 М раствора трилона Б по оксиду железа (III)

В три конические колбы вместимостью 250-300 см 3 отбирают по 20 см 3 треххлористого железа, разбавляют до 100 см 3 водой и нагревают примерно до 50 ° С, добавляют 6-7 капель сульфосалицилового индикатора и титрируют раствором трилона Б до исчезновения фиолетовой окраски сульфосалицилата железа. Титр раствора трилона Б в граммах на кубический сантиметр вычисляют по формуле

где -среднее арифметическое значение объема 0,05 М раствора трилона Б, прошедшего на титрование треххлористого железа, см 3 ;

20 -объем раствора треххлористого железа, взятый для титрования, см 3 .

8.2.3. Проведение анализа

Навеску анализируемого материала массой 0,2 г сплавляют в платиновом тигле с 2 г смеси для сплавления при 1000 ° С в течение 3-5 мин. Плав растворяют в 50 см 3 раствора соляной кислоты.

Материалы, растворяющиеся в соляной кислоте без остатка, помещают в коническую колбу вместимостью 250-300 см 3 , содержащую 15-20 см 3 воды, приливают 5-7 см 3 соляной кислоты и осторожно нагревают на плитке до полного разложения навески. Затем при любом способе разложения навески добавляют 7-10 капель азотной кислоты, разбавляют водой до 100 см 3 , слабо кипятят раствор 1-2 мин, после чего нейтрализуют раствором аммиака до изменения окраски бумажки конго в красный цвет, затем добавляют по каплям раствор соляной кислоты до изменения окраски индикаторной бумажки на сиреневую, после чего добавляют 8-10 капель избытка той же кислоты и титруют горячий раствор трилоном Б в присутствии 6-7 капель сульфосалицилового индикатора до исчезновения фиолетовой окраски раствора. Далее раствор сохраняют для определения оксида алюминия. Определение можно также вести из аликвотной части объемом 100 см 3 из раствора после определения оксида кремния по п. 6.4.3.

8.2.4. Обработка результатов

Массовую долю оксида железа (III) в процентах вычисляют по формуле

где -объем 0,05 М раствора трилона Б, пошедший на титрование, см 3 ;

-масса навески пробы, г.

При анализе материалов, содержащих двух- и трехвалентное железо, массовую долю оксида железа (III) вычисляют по формуле

где -массовая доля оксида железа (II), определяемая по п. 8.6, %;

1,1114 -коэффициент пересчета массовой доли оксида железа (II) на оксид железа (III).

При анализе материалов, содержащих только оксид железа (II), его массовую долю в процентах вычисляют по формуле

где 0,891 -коэффициент пересчета массовой доли оксида железа (III) на оксид железа (II).

8.3. Фотоколориметрический метод с сульфосалициловой кислотой при массовой доле оксида железа (III) до 10,0%.

Метод основан на образовании в аммиачной среде желтого комплекса трисульфосалицилата железа при использовании сульфосалициловой кислоты в качестве комплексообразователя.

8.3.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118, растворы 1:1 и 1:3.

Аммиак водный по ГОСТ 3760.

Кислота сульфосалициловая 2-водная по ГОСТ 4478, раствор массовой концентрацией 250 г/дм 3 .

Оксид железа (III) по ТУ 6-09-1418, высушенный при температуре 105-110 ° С до постоянной массы.

Смесь для сплавления по п. 6.4.1.

8.3.2. Подготовка к анализу

8.3.2.1. Приготовление стандартных, градуировочных и холостого растворов

Для приготовления стандартного раствора оксида железа (III) (раствора А) навеску оксида железа массой 0,1 г помещают в коническую колбу вместимостью 250 см 3 , приливают 50 см 3 раствора соляной кислоты 1:1 и, покрыв колбу часовым стеклом, нагревают при умеренном кипении до полного растворения навески. Затем раствор охлаждают, переводят количественно в мерную колбу вместимостью 1 дм 3 , доливают до метки водой и перемешивают. Массовая концентрация оксида железа (III) в растворе А -0,1 мг/см 3 .

Из раствора А готовят рабочий стандартный раствор оксида железа (III) (раствор Б), для чего отмеряют пипеткой 50 см 3 раствора А, переносят в мерную колбу вместимостью 250 см 3 , прибавляют 50 см 3 раствора соляной кислоты 1:3, доводят до метки водой и перемешивают. Массовая концентрация оксида железа (III) в растворе Б 0,02 мг/см 3 .

Для приготовления холостого раствора 1,5 г расплавленной смеси для сплавления растворяют в 100 см 3 раствора соляной кислоты 1:3, переводят в мерную колбу вместимостью 500 см 3 , доводят полученный раствор до метки водой и перемешивают.

При использовании градуировочных растворов, приготовленных из ОСО сырьевой смеси по п. 6.4.2.1, массовую долю оксида железа (III) в них рассчитывают относительно навески 0,15 г, которую принимают за основную.

8.3.2.2. Построение градуировочного графика

В пять мерных колб вместимостью 100 см 3 приливают 2; 5; 10; 15 и 25 см 3 раствора Б, что соответствует 0,04; 0,10; 0,20; 0,30; 0,50 мг оксида железа(III). Добавляют в первые четыре колбы соответственно 23; 20; 15; 10 см 3 холостого раствора и во все колбы по 15 см 3 раствора сульфосалициловой кислоты. Затем по каплям прибавляют раствор аммиака до получения устойчивого желтого окрашивания раствора и еще 5 см 3 избытка.

Растворы в колбах доводят до метки водой, перемешивают и фотоколориметрируют полученные градуировочные растворы, используя синий светофильтр с областью светопропускания при длине волны 420-450 нм в кювете с толщиной поглощающего свет слоя 10 мм относительно дистиллированной воды. По полученным результатам определений оптической плотности и известной концентрации оксида железа (III) в фотометрируемых объемах строят градуировочный график или составляют калибровочное уравнение.

При использовании градуировочных растворов, приготовленных из ОСО сырьевой смеси, отбирают в мерные колбы вместимостью 100 см 3 по 25 см 3 каждого градуировочного раствора.

Для расширения диапазона определяемых содержаний оксида железа (III) можно для последних трех градуировочных растворов использовать аликвотные части по 50 см 3 .

К отобранным аликвотным частям градуировочных растворов ОСО добавляют по 15 см 3 раствора сульфосалициловой кислоты. Дальнейшие операции выполняют аналогично изложенному выше для раствора Б.

8.3.3. Проведение анализа

Для определения массовой доли оксида железа (III) в мерную колбу вместимостью 100 см 3 отбирают 25 см 3 анализируемого раствора, приготовленного по п. 6.4.3, и далее поступают так же, как описано в п. 8.3.2.2.

8.3.4. Обработка результатов

Массу оксида железа (III) в миллиграммах находят по соответствующему градуировочному графику и вычисляют искомую массовую долю элемента по формуле ( 7).

Непосредственно массовую долю оксида железа (III) в процентах определяют по градуировочному графику, простроенному в координатах «оптическая плотность -массовая доля элемента в процентах» или находят по калибровочному уравнению. При отступлении от условий градуировки в части изменения навески, аликвотной части или разведения расчет проводят по формуле (8).

8.4. Фотоколориметрический метод с роданидом при массовой доле оксида железа (III) до 10,0%

Метод основан на образовании красного комплексного соединения роданида железа при использовании в качестве комплексообразователя роданистого калия или аммония.

8.4.1. Средства анализа

Весы лабораторные общего назначения.

Кислота азотная по ГОСТ 4461 и раствор молярной концентрацией вещества-эквивалента 4 моль/дм 3 (4H): 276 см 3 азотной кислоты разбавляют водой до 1 дм 3 .

Аммоний роданистый по ГОСТ 27067, раствор массовой концентрацией 250 г/дм 3 или калий роданистый по ГОСТ 4139, раствор массовой концентрацией 300 г/дм 3 .

Оксид железа (III) по ТУ 6-09-1418, высушенный при температуре 105-110 ° С до постоянной массы.

8.4.2. Подготовка к анализу

8.4.2.1. Приготовление стандартных, градуировочных и холостого растворов выполняют по п. 8.3.2.1.

8.4.2.2. Построение градуировочного графика

В пять мерных колб вместимостью 100 см 3 приливают 1,0; 2,5; 5,0; 10 и 15 см 3 раствора Б, что соответствует 0,02; 0,05; 0,10; 0,20 и 0,30 мг оксида железа (III). Добавляют соответственно 24; 22; 20; 15 и 10 см 3 холостого раствора, по 10 см 3 раствора азотной кислоты и поочередно по 10 мл раствора роданида аммония или калия, разбавляют до метки водой, тщательно перемешивают и фотометрируют полученные градуировочные растворы, учитывая недостаточную стойкость роданистого железа, непосредственно после их изготовления, используя синий светофильтр с областью светопропускания при длине волны 420-450 нм в кювете с толщиной поглощающего свет слоя 10 мм.

По полученным результатам определений оптической плотности и известной концентрации оксида железа (III) в фотометрируемых объемах строят градуировочный график или составляют калибровочное уравнение.

При использовании градуировочных растворов, приготовленных из ОСО сырьевой смеси, отбирают в мерные колбы вместимостью 100 см 3 по 25 см 3 каждого градуировочного раствора.

Для расширения диапазона определяемых содержаний оксида железа (III) для первого раствора используют аликвотную часть 10 см 3 , а для градуировочного раствора, содержащего 0,15 г образца, аликвотную часть 50 см 3 . Во все колбы добавляют по 10 см 3 раствора азотной кислоты. Дальнейшие операции выполняют аналогично изложенному выше для раствора Б.

8.4.3. Проведение анализа

Для определения массовой доли оксида железа (III) в мерную колбу вместимостью 100 см 3 отбирают 25 см 3 анализируемого раствора, приготовленного по п. 6.4.3, и далее поступают так же, как указано в п. 8.4.2.2.

8.4.4. Обработка результатов — по п. 8.3.4.

8.5. Фотоколориметрический метод с ортофенантролином при массовой доле оксида железа (III) до 3,0%

Метод основан на предварительном восстановлении трехвалентного железа гидрохлоридом гидроксиламина и образовании двухвалентными ионами железа с ортофенантролином оранжево-красного комплекса.

8.5.1. Средства анализа

Весы лабораторные общего назначения.

Гидроксиламина гидрохлорид по ГОСТ 5456, раствор массовой концентрацией 100 г/дм 3 .

Кислота уксусная по ГОСТ 61 и раствор 1:1.

Ортофенантролин (1,10-фенантролин):1,0 г ортофенантролина растворяют в 100 см 3 раствора уксусной кислоты 1:1.

Аммиак водный по ГОСТ 3760.

Универсальная индикаторная бумага по ТУ 6-09-1181.

Натрий уксуснокислый 3-водный по ГОСТ 199, раствор массовой концентрацией 500 г/дм 3 (далее буферный раствор).

Оксид железа (III) по ТУ 6-09-1418, высушенный при температуре 105-110 ° С до постоянной массы.

Смесь для сплавления по п. 6.4.1.

8.5.2. Подготовка к анализу

8.5.2.1. Приготовление стандартных, градуировочных и холостого растворов выполняют по п. 8.3.2.1.

8.5.2.2. Построение градуировочного графика

В пять мерных колб вместимостью 50 см 3 приливают 1; 2,5; 5; 10; 15 см 3 раствора Б, что соответствует 0,02; 0,05; 0,10; 0,20 и 0,30 мг оксида железа (III).

Поочередно во все колбы добавляют соответственно 24; 22; 20; 15 и 10 см 3 холостого раствора, по 2 см 3 раствора гидрохлорида гидроксиламина.

Затем приливают буферный раствор до установления pH 3,5 (по универсальной индикаторной бумаге).

Для определения объема буферного раствора, который необходимо прибавить в градуировочные растворы, отбирают аликвотную часть раствора Б объемом 10 см 3 и добавляют к ней буферный раствор до получения требуемого pH.

Для аликвотных частей 1; 2,5; 5 и 15 см 3 раствора Б необходимое количество буферного раствора определяется пропорциональным расчетом.

Далее в каждую колбу приливают по 5 см 3 ортофенантролина, доводят до метки водой, перемешивают и через 5 мин фотоколориметрируют полученные градуировочные растворы, используя синий светофильтр с областью светопропускания при длине волны 400-500 нм в кювете с толщиной поглощающего свет слоя 10 мм.

По полученным результатам определений оптической плотности и известной концентрации оксида железа (III) в фотометрируемых объемах строят градуировочный график или составляют калибровочное уравнение.

8.5.3. Проведение анализа

Для определения массовой доли оксида железа (III) в мерную колбу вместимостью 50 см 3 отбирают 25 см 3 анализируемого раствора, приготовленного по п. 6.4.3, и далее поступают так же, как указано в п. 8.5.2.2.

При определении массовой доли оксида железа (III) в белом портландцементе навеску образца массой 0,5 г сплавляют с 2 г смеси для сплавления, плав растворяют в 30-40 см 3 раствора соляной кислоты 1:3, переводят в мерную колбу вместимостью 100 см 3 , готовят и фотометрируют окрашенный раствор из аликвотной части 25-50 см 3 , как изложено в п. 8.5.2.2.

8.5.4. Обработка результатов — по п. 8.3.4.

8.6. Перманганатный метод при массовой доле оксида железа (II) до 10,0%

Метод основан на кислотном разложении пробы в токе углекислого газа и последующем титровании оксида железа (II) перманганатом калия.

8.6.1. Средства анализа

Весы лабораторные общего назначения.

Кислота серная по ГОСТ 4204 и раствор 1:4.

Калий марганцово-кислый по ГОСТ 20490 или стандарт-титр, раствор молярной концентрацией вещества-эквивалента 0,1 моль/дм 3 (0,1 Н).

Натрий углекислый по ГОСТ 83, плавленый: соду помещают в платиновую чашку или тигель и выдерживают в муфельной печи 5-8 мин при температуре 850-900 ° С, охлаждают, разбивают на кусочки, хранят в закрытом бюксе.

Кислота соляная по ГОСТ 3118.

Кислота фтористо-водородная по ГОСТ 10484.

Углекислый газ: получают в аппарате Киппа действием раствора соляной кислоты на мраморную крошку или используют углекислый газ из баллона.

Клапан Бунзена: изготовляют из отрезка толстостенной резиновой трубки длиной 50 мм. С одного конца трубки плотно закрывают резиновой пробкой, либо заливают резиновым клеем. Другой конец надевают на стеклянную трубку. Лезвием бритвы вдоль резиновой трубки делают прорез (щель) длиной 15-20 мм.

8.6.2. Проведение анализа

8.6.2.1. В коническую колбу вместимостью 250-500 см 3 приливают 100 см 3 раствора серной кислоты, закрывают колбу пробкой с двумя отверстиями, в которые вставлены стеклянные трубки, согнутые под прямым углом. Одна из трубок (по ходу газа) доходит до дна колбы, вторая кончается под пробкой. Длинную трубку присоединяют к аппарату Киппа с углекислым газом, открывают кран и пропускают углекислый газ 3-5 мин.

При отсутствии аппарата Киппа в такую же колбу с раствором серной кислоты помещают несколько кусочков плавленой соды и закрывают колбу резиновой пробкой с клапаном Бунзена.

Затем, в обоих случаях, приоткрыв пробку, быстро помещают в колбу навеску свежеизмельченного клинкера или цемента массой 1-1,5 г в кальке или папиросной бумаге, не прекращая тока газа. Содержимое колбы кипятят 15 мин, пропуская все время ток углекислого газа. Затем колбу снимают с плитки, охлаждают, после чего отсоединяют колбу от прибора Киппа, прибавляют 100 см 3 свежепрокипяченной и охлажденной до комнатной температуры воды и титруют 0,1 Н раствором марганцово-кислого калия до розовой окраски, не исчезающей в течение 20-30 с.

8.6.2.2. Материалы, не растворяющиеся в серной кислоте без остатка, разлагают в смеси фтористо-водородной и серной кислот.

Навеску свежеизмельченного материала массой 0,5-1 г помещают в большой платиновый тигель, смачивают водой, прибавляют 10 см 3 раствора серной кислоты, доливают до половины тигля горячей свежепрокипяченной водой, закрывают тигель крышкой с отверстием, вставляя в него стеклянную трубку от аппарата Киппа, пропускают углекислый газ. Тигель нагревают на песчаной бане, пропуская углекислый газ до начала кипения жидкости. Затем прекращают подачу углекислого газа (отсоединяют от прибора), отводят крышку и быстро прибавляют 7 см 3 фтористо-водородной кислоты.

Тигель плотно закрывают крышкой (без отверстия) и осторожно нагревают до появления белых паров, после чего содержимое в тигле кипятят 10 мин.

Затем тигель переносят в стакан вместимостью 400-500 см 3 , прибавляют 150 см 3 свежепрокипяченной и охлажденной до комнатной температуры воды, 5 см 3 серной кислоты и быстро титруют, как описано в п. 8.6.2.1.

8.6.3. Обработка результатов

Массовую долю оксида железа (II) в процентах вычисляют по формуле

где -объем раствора марганцово-кислого калия, пошедший на титрование, см3;

0,007184 -количество оксида железа (II), соответствующее 1 см3 точно 0,1 Н раствора марганцово-кислого калия, г;

-масса навески пробы, г.

9. Определение оксида алюминия

9.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать значений, указанных в табл. 7.

Таблица 7

Массовая доля оксида алюминия

9.2. Объемный комплекснометрический метод

Метод основан на образовании комплексного соединения трилона Б с ионами алюминия при pH раствора 2-3 с последующим обратным титрованием избытка трилона Б, заведомо вводимого после определения оксида железа (по п. 7.2), раствором хлорида железа при pH 4,8-5,0.

Присутствующие в растворе после определения оксида железа трилонат железа, не разрушающийся при pH раствора 4,8-5,0, а также ионы кремния, кальция, магния, серы не препятствуют определению оксида алюминия.

9.2.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118 и раствор 1:3.

Кислота азотная по ГОСТ 4461 .

Аммиак водный по ГОСТ 3760, раствор 1:1,5.

Трилон Б по ГОСТ 10652, раствор массовой концентрацией 0,05 моль/дм 3 (0,05 М): готовят по п. 8.2.1.

Кислота сульфосалициловая 2-водная по ГОСТ 4478.

Сульфосалициловый индикатор по п. 8.2.1.

Натрия гидроксид по ГОСТ 4328 или калия гидроксид по ГОСТ 24363, раствор массовой концентрацией 200 г/дм 3 .

Кислота уксусная по ГОСТ 61, ледяная или массовой концентрацией 800 г/дм 3 .

Натрий уксусно-кислый 3-водный по ГОСТ 199 или безводный (плавленый).

Смесь для сплавления по п 6.4.1.

Железо треххлористое 6-водное по ГОСТ 4147 или железоаммонийные квасцы, раствор массовой концентрацией 0,05 моль/дм 3 (0,05 М) по п. 8.2.1.

Квасцы алюмокалиевые по ГОСТ 4329, раствор массовой концентрацией 0,05 моль/дм 3 : 16 г квасцов растворяют в 300 см 3 воды, фильтруют раствор в мерную колбу вместимостью 1 дм 3 , добавляют 9 см 3 соляной кислоты, разбавляют водой до метки, перемешивают.

Ацетатный буферный раствор с pH 4,8-5,0: 165 г плавленого уксусно-кислого натрия или 270 г натрия уксусно-кислого 3-водного растворяют в 300-400 см 3 воды, фильтруют в мерную колбу вместимостью 1 дм 3 , добавляют 60 см 3 ледяной или 75 см 3 уксусной кислоты массовой концентрацией 800 г/дм 3 и доливают до 1 дм 3 водой.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Метиловый красный (индикатор), спиртовой раствор массовой концентрацией 2 г/дм 3 в этиловом спирте.

9.2.2. Подготовка к анализу

9.2.2.1. Установка титра раствора алюмокалиевых квасцов по оксиду алюминия

По 25 см 3 раствора алюмокалиевых квасцов помещают в три стакана вместимостью 150 см 3 , разбавляют водой до объема 100 см 3 и двукратно осаждают гидроксид алюминия аммиаком по индикатору метиловому красному.

Осадок фильтруют и прокаливают при температуре 1100 ° С до постоянной массы.

Титр раствора алюмокалиевых квасцов в граммах на кубический сантиметр вычисляют по формуле

где -среднее арифметическое значение массы прокаленного осадка оксида алюминия, г;

25 -объем аликвотной части раствора алюмокалиевых квасцов, см 3 .

9.2.2.2. Установка титра раствора трилона Б по оксиду алюминия

Предварительно устанавливают объемное соотношение между концентрациями растворов трилона Б и треххлористого железа массовой концентрацией 0,05 моль/дм3. Для этого спускают из бюретки в три конические колбы вместимостью 250-300 см3 по 10 см3 раствора трилона Б, разбавляют водой до объема 100 см3, приливают 10 см3 ацетатного буферного раствора, 6-7 капель сульфосалицилового индикатора и титруют раствором треххлористого железа до появления золотисто-оранжевой окраски, не исчезающей в течение 1 мин.

Коэффициент , выражающий объемное соотношение между концентрациями растворов трилона Б и треххлористого железа, вычисляют по формуле

где -среднее арифметическое значение объемов раствора треххлористого железа, пошедшего на титрование 10 см3 раствора трилона Б, см3.

Титр раствора трилона Б для определения оксида алюминия устанавливают следующим образом. В три конические колбы вместимостью 250-300 см3 спускают из бюретки по 20 см3 титрованного раствора алюмокалиевых квасцов, разбавляют водой до объема 100 см3, нейтрализуют раствором аммиака до изменения в красный цвет бумажки «конго». Затем по каплям добавляют раствор соляной кислоты до изменения цвета бумажки «конго» в сиреневую и еще 8-10 капель избытка той же кислоты. К полученному раствору добавляют 25 см3 раствора трилона Б, нагревают до кипения, прибавляют 10 см3 ацетатного буферного раствора, 6-7 капель сульфосалицилового индикатора, охлаждают до комнатной температуры и титруют раствором хлористого железа до появления золотисто-оранжевой окраски, устойчивой в течение 1 мин.

Титр раствора трилона Б в граммах на кубический сантиметр вычисляют по формуле

где 20 -объем титрованного раствора алюмокалиевых квасцов, см3;

25 -объем раствора трилона Б, заранее прилитый к титрованному раствору алюмокалиевых квасцов, см3;

-среднее арифметическое значение объема раствора треххлористого железа, пошедший на обратное титрование, см3.

9.2.3. Проведение анализа

К раствору анализируемой пробы после определения оксида железа (III) по п. 8.2.3.1 добавляют такое количество раствора трилона Б, чтобы хватило на полное связывание предполагаемого количества оксида алюминия в комплекс и остался избыток около 10 см3. Количество добавляемого раствора трилона Б в кубических сантиметрах вычисляют по формуле

где -масса навески пробы, г.

-предполагаемая массовая доля оксида алюминия в материале пробы, %;

10 -избыток раствора трилона Б, см 3 .

После добавления раствора трилона Б анализируемый раствор нагревают и доводят до кипения, прибавляют 10 см 3 ацетатного буферного раствора, охлаждают до комнатной температуры и титруют раствором треххлористого железа до появления золотисто-оранжевого окрашивания, не исчезающего в течение 1 мин.

Примечание. В материалах, не содержащих оксид железа, оксид алюминия определяется из отдельной навески массой 0,05-0,20 г в зависимости от концентрации или из аликвотной части фильтрата после отделения оксида кремния желатином по п. 6.3.2.

Разрешается также определять оксиды железа и алюминия, используя осадок гидроксидов, полученный по п. 7.2.3 после его растворения в соляной кислоте.

9.2.4. Обработка результатов

Массовую долю оксида алюминия в процентах вычисляют по формуле

где -объем раствора треххлористого железа, пошедший на обратное титрование, см 3 ;

-масса навески пробы, г.

-массовая доля оксида титана в пробе, определенная по разд.10, %.

9.3. Прямой фотоколориметрический метод

Метод основан на образовании окрашенного в красный цвет комплексного соединения иона алюминия с алюминоном при pH раствора 4,5-4,8.

9.3.1. Средства анализа

Весы лабораторные общего назначения.

PH-метр или иономер.

Натрий уксусно-кислый 3-водный по ГОСТ 199 или безводный по ТУ 6-09-246.

Натрия гидроксид по ГОСТ 4328, раствор массовой концентрацией 10 г/дм 3 .

Кислота уксусная по ГОСТ 61, ледяная.

Кислота аскорбиновая пищевая, раствор массовой концентрацией 2 г/дм 3 : 0,2 г кислоты растворяют в 100 см 3 воды. Раствор годен 2-3 сут.

Алюминон (аммонийная соль ауринтрикарбоновой кислоты), раствор массовой концентрацией 1 г/дм 3 : 1 г алюминона растворяют в 100 см 3 воды с последующим разведением водой до 1 дм 3 . Раствор тщательно перемешивают, выдерживают в течение 4-5 сут в темном месте, хранят в сосуде из темного стекла.

Ацетатный буферный раствор pH 5,2 — 5,3: 100 г натрия уксусно-кислого безводного или 168 г 3-водного растворяют в 300 см 3 воды, фильтруют и разбавляют водой до 950 см 3 , добавляют 15 см 3 ледяной уксусной кислоты, перемешивают и проверяют pH раствора на иономере pH-метре; при значении pH менее 5,2 добавляют по каплям раствор гидроксида натрия, при pH более 5,3 — несколько капель уксусной кислоты.

9.3.2. Подготовка к анализу

9.3.2.1. Приготовление градуировочных растворов

Используют градуировочные растворы, приготовленные по п. 6.4.2.1, приняв навеску ОСО массой 0,15 г за основную и рассчитывают относительно нее массовую долю оксида алюминия в процентах во всех остальных навесках.

9.3.2.2. Построение градуировочного графика

В пять мерных колб вместимостью 50 см 3 приливают соответственно по 5 см 3 каждого градуировочного раствора, добавляют по 1 см 3 раствора аскорбиновой кислоты и по 5 см 3 раствора алюминона, затем добавляют по 10 см 3 ацетатного буферного раствора, разбавляют до метки водой, перемешивают и после 15 мин выстаивания фотометрируют растворы относительно дистиллированной воды, используя зеленый светофильтр с максимумом светопропускания при длине волны 530-536 нм и кювету с толщиной пропускающего свет слоя 10 мм.

По полученным результатам определения оптической плотности и известной концентрации оксида алюминия в фотометрируемых объемах строят градуировочный график или составляют калибровочное уравнение.

9.3.3. Проведение анализа

Для определения массовой доли оксида алюминия в две мерные колбы вместимостью 50 см 3 отбирают: в одну -5 см 3 анализируемого раствора, приготовленного по п. 6.4.3; в другую -5 см 3 близкого по массовой доле элемента к анализируемому градуировочного раствора, приготовленного по п. 9.3.2.1. Затем в обе колбы приливают по 1 см 3 раствора аскорбиновой кислоты и по 5 см 3 раствора алюминона. Дальнейшие операции -по п. 9.3.2.2.

С целью строгого сохранения кислотности фотометрируемых растворов в случае изменения условий фотометрирования по сравнению с условиями градуирования проводят следующие операции.

При уменьшении разведения анализируемого раствора уменьшают пропорционально количество раствора соляной кислоты, используемой для растворения сплавленной по п. 6.4.3 навески пробы;

при уменьшении аликвотной части анализируемого раствора, приготовленного по п. 6.4.3, восполняют ее до объема 5 см 3 холостым раствором, приготовленным по п. 7.3.2.1;

при увеличении аликвотной части анализируемого раствора разницу в использованном объеме (по сравнению с 5 см 3 градуировочного раствора) отдельно титруют раствором гидроксида натрия и пошедшее на нейтрализацию количество гидроксида натрия добавляют к отобранной аликвотной части анализируемого раствора;

при проведении анализа железосодержащих материалов (пиритные огарки, железосодержащие шлаки, золы, известняково-огарочные сырьевые смеси и т.п.), где массовая доля оксида железа превышает 10%, рекомендуется определение оксида алюминия проводить из отдельной навески массой не более 0,1 г, а к отобранной аликвотной части добавляют 5 см 3 раствора аскорбиновой кислоты.

9.3.4. Обработка результатов

Перед вычислением массовой доли оксида алюминия вводят поправку на изменение условий фотометрирования в соответствии с п. 1.18.

Массу оксида алюминия в миллиграммах находят по градуировочному графику и вычисляют искомую массовую долю элемента по формуле ( 7).

Непосредственно массовую долю оксида алюминия в процентах определяют по градуировочному графику, построенному в координатах «оптическая плотность ¾ массовая доля элемента в процентах» или находят по калибровочному уравнению. При отступлении от условий градуировки в части изменения навески, аликвотной части или разведения расчет проводят по формуле ( 8).

9.4. Дифференциальный фотометрический метод

Метод основан на измерении оптической плотности красного комплекса иона алюминия с алюминоном в анализируемом растворе относительно обусловленной оптической плотности аналогичным образом полученного раствора стандартного образца.

9.4.1. Средства анализа ¾ по п. 9.3.1.

9.4.2. Подготовка к анализу

9.4.2.1. Приготовление градуировочных растворов

Используют градуировочные растворы, приготовленные по п. 6.5.2.1, приняв навеску ОСО массой 0,10 г за основную, и рассчитывают относительно нее массовую долю оксида алюминия в процентах во всех остальных навесках.

9.4.2.2. Построение градуировочного графика

В пять мерных колб вместимостью 50 см 3 приливают соответственно по 5 см 3 каждого градуировочного раствора, добавляют по 5 см 3 раствора аскорбиновой кислоты и по 5 см 3 раствора алюминона, затем добавляют по 10 см 3 ацетатного буферного раствора, разбавляют до метки водой, перемешивают и полученные растворы для развития окраски оставляют на 3 ч, затем фотометрируют в соответствии с п. 9.3.2.2 относительно основного градуировочного раствора; при этом оптический ноль фотометрического прибора по шкале поглощения в зависимости от чувствительности устанавливают по этому раствору в интервале оптической плотности 0,250 -0,300.

По полученным значениям относительных оптических плотностей и соответствующих им концентрациям оксида алюминия в градуировочных растворах строят градуировочный график или составляют калибровочное уравнение.

9.4.3. Проведение анализа

Для определения массовой доли оксида алюминия в две мерные колбы вместимостью 50 см 3 отбирают: в одну -5 см 3 анализируемого раствора, приготовленного по п. 6.5.3; в другую -5 см 3 основного градуировочного раствора, приготовленного по п. 9.4.2.1. Затем в обе колбы приливают по 5 см 3 раствора аскорбиновой кислоты.

Дальнейшие операции — по п. 9.4.2.2.

С целью строгого сохранения кислотности фотометрируемых растворов в случае изменения условий фотометрирования по сравнению с условиями градуировки поступают, как описано в п. 9.3.3.

9.4.4. Обработка результатов — по п. 9.3.4 (без введения поправки).

10. Определение оксида титана (IV)

10.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать значений, указанных в табл. 8.

Массовая доля оксида титана

10.2. Фотоколориметрический метод с перекисью водорода

Метод основан на образовании в серно-кислой среде окрашенного в желтый цвет комплексного соединения титана с перекисью водорода.

10.2.1. Средства анализа

Весы лабораторные общего назначения.

Смесь для сплавления по п. 6.4.1.

Смесь для сплавления по п. 12.2.1.

Кислота соляная по ГОСТ 3118, раствор 1:3.

Кислота серная по ГОСТ 4204, раствор 1:20.

Кислота ортофосфорная по ГОСТ 6552.

Водорода перекись по ГОСТ 10929, раствор 1:10.

Титана (IV) оксид по ТУ 6-09-2166.

10.2.2. Подготовка к анализу

10.2.2.1. Приготовление стандартного раствора

Навеску оксида титана (IV) массой 0,05 г сплавляют в платиновом тигле с 1 г смеси для сплавления по п. 6.4.1 при температуре 900-950 ° С в течение 10 мин. Плав растворяют в 100 см 3 раствора соляной кислоты, количественно переносят в мерную колбу вместимостью 500 см 3 , доливают до метки водой и перемешивают. Массовая концентрация стандартного раствора оксида титана -0,1 мг/см 3 .

10.2.2.2. Построение градуировочного графика

В пять мерных колб вместимостью 100 см 3 приливают 2,5; 5; 10; 15; 20 см 3 стандартного раствора, что соответствует 0,25; 0,50; 1,00; 1,50; 2,00 мг оксида титана.

В каждую колбу добавляют по 10 см 3 раствора соляной кислоты, 3-5 капель ортофосфорной кислоты, доводят объем примерно до 50 см 3 водой и добавляют по 3 см 3 раствора перекиси водорода, доливают до метки раствором серной кислоты, тщательно перемешивают и фотометрируют полученные градуировочные растворы относительно дистиллированной воды, используя синий светофильтр с областью светопропускания при длине волны 420-450 нм и кювету с толщиной поглощающего свет слоя 50 мм.

По полученным результатам определений оптической плотности и известной концентрации оксида титана в фотометрируемых объемах строят градуировочный график или составляют калибровочное уравнение.

10.2.3. Проведение анализа

Навеску пробы массой 0,5 г помещают в платиновый тигель, смешивают с 2 г смеси для сплавления по п. 6.4.1 и сплавляют при температуре 900-950 ° С в течение 5 мин для цемента, клинкера, доменного шлака, цементной сырьевой смеси или 15-20 мин для других материалов. Плав обрабатывают 50 см 3 раствора соляной кислоты. Полученный раствор переводят в мерную колбу вместимостью 250 см 3 , доливают до метки раствором серной кислоты и перемешивают.

Из полученного раствора отбирают аликвотную часть объемом 25-50 см 3 в зависимости от предполагаемой массовой доли оксида титана в анализируемой пробе и переносят в мерную колбу вместимостью 100 см 3 , добавляют 3 см 3 перекиси водорода, доливают до метки раствором серной кислоты, перемешивают и фотометрируют по п. 10.2.2.2.

Разложение навески пробы допускается проводить со смесью для сплавления по п. 12.2.1. Полученный при этом раствор используют далее для определения массовой доли оксидов натрия и калия.

10.2.4. Обработка результатов

Массу оксида титана (IV) в миллиграммах находят по градуировочному графику и вычисляют искомую массовую долю элемента по формуле ( 7).

10.3. Фотоколориметрический метод с диантипирилметаном

Метод основан на образовании окрашенного в желтый цвет комплексного соединения титана с диантипирилметаном.

10.3.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118, раствор 1:3 и раствор молярной концентрацией 1 моль/дм 3 (1М): 80 см 3 кислоты разбавляют в 1 дм 3 воды.

Кислота аскорбиновая пищевая, раствор массовой концентрацией 2 г/дм 3 : 0,2 г кислоты растворяют в 100 см 3 воды. Раствор годен 2-3 сут.

Диантипирилметан по ТУ 6-09-3835, раствор массовой концентрацией 50 г/дм 3 : 50 г диантипирилметана растворяют в 1 М растворе соляной кислоты.

Титана (IV) оксид по ТУ 6-09-2166.

Медь серно-кислая, раствор массовой концентрацией 50 г/дм 3 .

10.3.2. Подготовка к анализу

10.3.2.1. Приготовление стандартного раствора -по п. 10.2.2.1.

10.3.2.2. Построение градуировочного графика

В пять мерных колб вместимостью 100 см 3 приливают 1; 2; 3; 4; 5 см 3 стандартного раствора, что соответствует 0,1; 0,2; 0,3; 0,4; 0,5 мг оксида титана (IV), добавляют в каждую колбу по 10 см 3 раствора соляной кислоты, две капли раствора серно-кислой меди, 10 см 3 аскорбиновой кислоты, 25 см 3 воды, 5 см 3 раствора диантипирилметана доливают до метки водой, перемешивают и оставляют на 45 мин. Полученные градуировочные растворы фотометрируют относительно дистиллированной воды, используя синий светофильтр с областью светопропускания при длине волны 380-420 нм в кюветах с толщиной поглощающего свет слоя 20 мм.

По полученным результатам определений оптической плотности и известной концентрации оксида титана в фотометрируемых объемах строят градуировочный график.

10.3.3. Проведение анализа

В мерную колбу вместимостью 100 см 3 отбирают 50 см 3 анализируемого раствора, приготовленного по п. 6.4.3, добавляют две капли раствора серно-кислой меди. Дальнейшие операции — по п. 10.3.2.2.

10.3.4. Обработка результатов -по п. 10.2.4.

11. Определение оксида серы (VI), (II)

11.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать значений, указанных в табл. 9.

Таблица 9

Массовая доля оксида серы

11.2. Гравиметрический метод

Метод основан на осаждении в соляно-кислой среде сульфат-ионов избытком хлористого бария и нахождении массовой доли оксида серы (VI) при взвешивании выделенного осадка.

11.2.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118, растворы 1:3 и 1:9.

Барий хлористый по ГОСТ 4108, раствор массовой концентрацией 40 г/дм 3 .

Аммоний углекислый по ГОСТ 3770, раствор массовой концентрацией 100 г/дм 3 .

Аммиак водный по ГОСТ 3760, раствор 1:1,5.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Серебро азотно-кислое по ГОСТ 1277, раствор массовой концентрацией 10 г/дм 3 .

Смесь для сплавления по п. 6.4.1.

Метиловый красный (индикатор), спиртовой раствор массовой концентрацией 2 г/дм 3 в этиловом спирте.

11.2.2. Проведение анализа

При анализе растворимых в соляной кислоте материалов навеску пробы массой 0,5 г обрабатывают 50 см 3 раствора соляной кислоты 1:9 в стакане вместимостью 400 см 3 . Содержимое стакана нагревают и кипятят на плитке 3-5 мин до полного разложения навески. Горячий раствор фильтруют через неплотный фильтр «белая лента». Осадок промывают 8-10 раз горячей водой и отбрасывают.

При массовой доле оксид серы (VI) более 5% навеску уменьшают пропорционально увеличению массовой доли элемента.

При анализе нерастворимых в соляной кислоте материалов навеску пробы массой 0,5 г сплавляют в закрытом крышкой платиновом тигле с 2 г смеси для сплавления при температуре 950-1000 ° С в течение 3-5 мин. Плав растворяемой в 40-50 см 3 подогретого до температуры 50-60 ° С раствора соляной кислоты 1:3.

В гипсоглиноземистом цементе навеску пробы массой 0,25 г обрабатывают 75 см 3 раствора соляной кислоты 1:9 в стакане вместимостью 400 см 3 . Содержимое стакана кипятят на плитке 3-5 мин до полного разложения навески, добавляют 3-4 капли метилового красного, раствор аммиака до пожелтения раствора, 20 см 3 углекислого аммония (для осаждения гидроксида и карбоната кальция) и еще 10 см 3 аммиака. Стакан помещают на несколько минут в теплое место до просветления жидкости над осадком, после чего фильтруют через двойной плотный фильтр «синяя лента». Осадок промывают горячей водой до исчезновения реакции на ион хлора и отбрасывают. Фильтр объемом 250-300 см 3 подкисляют соляной кислотой (осторожно, под часовым стеклом) до появления розового окрашивания и нагревают на электроплитке до полного прекращения выделения пузырьков углекислого газа.

Затем при любом способе разложения навески раствор или фильтрат разбавляют водой до объема не менее 300 см 3 и нейтрализуют раствором аммиака до появления легкой мути, которую растворяют несколькими каплями соляной кислоты. К прозрачному раствору прибавляют еще 2 см 3 соляной кислоты, нагревают раствор до кипения и осаждают серный ангидрид 25 см 3 кипящего раствора хлористого бария. Раствор кипятят на плитке в течение 5 мин при постоянном помешивании, оставляют до просветления жидкости над осадком, затем фильтруют через двойной плотный фильтр «синяя лента» и промывают осадок горячей водой до исчезновения реакции и ион хлора. Осадок с фильтром переносят в предварительно прокаленный и взвешенный фарфоровый тигель, слегка подсушивают на плитке, озоляют и прокаливают в муфельной печи в течение 20 — 30 мин при температуре 800 — 850 ° С. Тигель охлаждают в эксикаторе и взвешивают. Прокаливание повторяют до получения постоянной массы.

При анализе материалов, содержащих шести- и двухвалентную серу, с целью их дифференцирования проводят двухкратное определение серы. Анализ проводят следующим образом.

Определяют серу (VI) после растворения навески в соляной кислоте: сера (II) в виде сероводорода улетучивается и в растворе определяют серу (VI), как изложено выше; серу (VI) без учета серы (II) можно также определять катионитовым методом по п. 11.4;

определяют общую серу после разложения навески со смесью для сплавления: при этом сера (II) полностью окисляется в серу (VI); общую массовую долю серы в виде оксида серы (VI); определяют, как изложено выше.

11.2.3. Обработка результатов

Массовую долю общей серы ( ) в процентах вычисляют по формуле

где -масса пустого тигля, г;

-масса тигля с прокаленным осадком, г;

-масса навески пробы, г;

0,343 -коэффициент пересчета серно-кислого бария на оксид серы (VI).

Массовую долю серы (II) ( ) в процентах вычисляют по формуле

где -массовая доля серы (VI), определенная при растворении навески в соляной кислоте или катионитовым методом по п. 11.4, %;

0,4 -коэффициент пересчета серы (VI) на серу (II).

11.3. Фототурбидиметрический метод при массовой доле оксида серы (VI) до 17%

Метод основан на взаимодействии сульфат-ионов с ионами бария с образованием коллоидной суспензии сульфата бария в кислой среде в присутствии защитного коллоида и фотометрировании степени помутнения раствора.

11.3.1. Средства анализа

Весы лабораторные общего назначения.

Калий сернокислый по ГОСТ 4145.

Кислота соляная по ГОСТ 3118 и раствор 1:3.

Гидроксид натрия по ГОСТ 4328, раствор массовой концентрацией 100 г/дм 3 .

Кислота ортофосфорная по ГОСТ 6552.

Крахмал растворимый по ГОСТ 10163, раствор по п. 7.3.1.

Барий хлористый по ГОСТ 4108, твердый, просеянный, в зернах, фракции 0,2 — 1,0 мм или 0,08 — 0,20 мм.

Смесь для сплавления по п. 6.4.1.

11.3.2. Подготовка к анализу

11.3.2.1. Приготовление стандартного и холостого растворов

Навеску серно-кислого калия массой 0,4352 г растворяют в 100 см 3 воды, количественно переносят в мерную колбу вместимостью 1 дм 3 , доводят до метки водой и перемешивают. Массовая концентрация стандартного раствора оксида серы (VI) -0,2 мг/см 3 .

Холостой раствор готовят растворением 6 г смеси для сплавления в 100 см 3 раствора соляной кислоты 1:3 с последующим разведением водой до 1 дм 3 .

11.3.2.2. Построение градуировочного графика

В пять мерных колб вместимостью 100 см 3 приливают 1; 2; 3; 4; 5 см 3 стандартного раствора, что соответствует 0,2; 0,4; 0,6; 0,8; 1,0 мг оксида серы.

Мерные колбы подбирают таким образом, чтобы расстояние от края горлышка было не менее 5 см.

Во все колбы добавляют по 50 см 3 холостого раствора, 10 капель ортофосфорной кислоты, 7 см 3 раствора гидроксида натрия, 10 см 3 раствора крахмала, разбавляют водой до метки и перемешивают. Поочередно вводят в мерные колбы «затравку» в количестве 5 -8 кристалликов хлорида бария и перемешивают каждую колбу в течение 1 мин. Через 5 мин всыпают 0,3 г хлорида бария и сразу же энергично перемешивают, переворачивая колбу и взбалтывая раствор в течение 2 мин.

Растворы оставляют для созревания коллоида сульфата бария на 40 мин и фотометрируют полученные градуировочные растворы относительно дистиллированной воды, используя синий светофильтр с областью светопропускания при длине волны 480 -550 нм и кювету с толщиной поглощающего свет слоя 50 мм.

По полученным результатам определений оптической плотности и известной концентрации оксида серы в фотометрируемых объемах строят градуировочный график. Из-за параболического характера градуировочного графика калибровочное уравнение не составляют.

11.3.3. Проведение анализа

При массовой доле оксида серы (VI) в анализируемой пробе менее 1% навеску пробы массой 0,5 г помещают в платиновый тигель, смешивают с 1,5 г смеси для сплавления и сплавляют при температуре 900 — 950 ° С в течение 5 мин для цемента, клинкера и доменного шлака и 15 — 20 мин для остальных материалов. Плав обрабатывают 50 см 3 раствора соляной кислоты 1:3, переводят в мерную колбу вместимостью 250 см 3 и разбавляют водой до метки.

При массовой доле оксида серы (VI) от 1 до 3% используют навеску массой 0,3 г; при более высокой массовой доле элемента уменьшают аликвотную часть анализируемого раствора до 25 см 3 или проводят фототурбидиметрическое определение из анализируемого раствора для фотометрического анализа, приготовленного по п. 6.4.3.

Для определения массовой доли оксида серы (VI) в две мерные колбы вместимостью 100 см 3 отбирают: в одну -50 см 3 анализируемого раствора; в другую -аликвотную часть близкого по массовой доле элемента к анализируемому стандартного раствора, к которой добавляют 50 см 3 холостого раствора. Затем в обе колбы приливают по 10 капель ортофосфорной кислоты. Дальнейшие операции -по п. 11.3.2.2.

При анализе проб с массовой долей оксида серы менее 0,5% к аликвотной части анализируемого раствора объемом 50 см 3 добавляют 2 см 3 стандартного раствора, а во вторую — те же 2 см 3 стандартного и 50 см 3 холостого растворов. Дальнейшие операции -по п. 11.3.2.2. Количество добавленного оксида серы, содержащегося в 2 см 3 стандартного раствора учитывается в расчетах.

11.3.4. Обработка результатов

Перед вычислением массовой доли оксида серы вводят поправку на изменение условий фотометрирования в соответствии с п. 1.18.

Массу оксида серы в миллиграммах находят по градуировочному графику и вычисляют искомую долю элемента по формуле ( 7).

В случае дополнительного ввода к анализируемому раствору 2 см 3 стандартного раствора массовую долю оксида серы ( ) в процентах вычисляют по формуле

где -масса оксида серы, найденная по графику, мг;

0,4 -масса оксида серы в 2 см 3 стандартного раствора, мг;

-общий объем анализируемого раствора, см 3 ;

-объем аликвотной части, взятый для проведения анализа, см 3 ;

-масса навески пробы, мг.

11.4. Катионитовый метод при массовой доле оксида серы (VI) в цементе до 17%

Метод основан на растворении серы (VI) гипса, применяемого в качестве добавки к цементу, в растворе борной кислоты, пропускании раствора через катионитовую смолу в Н-форме и титровании образовавшейся в результате ионного обмена серной кислоты.

Присутствующие в фильтрате борная, кремниевая и сероводородная (при наличии серы (II)) кислоты не мешают определению серы (VI), обусловленной наличием гипса.

11.4.1. Средства анализа

Весы лабораторные общего назначения.

Смолы ионообменные. Катиониты по ГОСТ 20298: КУ-1, КУ-2, СБС, СБСР, СДВ.

Кислота борная по ГОСТ 9656, раствор массовой концентрацией 50 г/дм 3 .

Кислота соляная по ГОСТ 3118 и раствор 1:3.

Кислота щавелевая по ГОСТ 22180, раствор массовой концентрацией 100 г/дм 3 или аммоний щавелево-кислый по ГОСТ 5712, раствор массовой концентрацией 40 г/дм 3 .

Аммиак водный по ГОСТ 3760, раствор 1:1,5.

Натрия гидроксид по ГОСТ 4328 или стандарт-титр, раствор молярной концентрацией 0,1 моль/дм 3 (0,1 М).

Калия гидроксид по ГОСТ 24363, раствор массовой концентрацией 100 г/дм 3 .

Кислота серная по ГОСТ 4204, раствор молярной концентрацией 0,05 моль/дм 3 (0,05 М) (стандарт-титр), или соляная кислота по ГОСТ 3118, раствор молярной концентрацией 0,1 моль/дм 3 (0,1 М) (стандарт-титр).

Метиловый оранжевый (индикатор): 0,1 г индикатора растворяют в 100 см 3 воды.

11.4.2. Подготовка к анализу

11.4.2.1. Перевод катионитовой смолы в Н-форму

Катионитовую смолу (катионит) просеивают через сито с отверстиями 0,2 мм. Фракцию более 0,2 мм замачивают на 6 — 8 ч в воде, помещают в воронку, в нижней части которой находится стеклянная вата, и промывают 3 — 4 раза теплым раствором соляной кислоты. Избыток кислоты отмывают водой до исчезновения кислой реакции промывных вод (проба индикатором метиловым оранжевым). Влажный катионит в Н-форме хранят в стеклянной банке с пробкой.

11.4.2.2. Зарядка ионообменной колонки

В нижней части колонки (черт. 1) помещают стеклянную вату, на которую вместе с водой переносят небольшими порциями смолу, избегая образование между зернами катионита воздушных пузырей. Колонку заполняют катионитом на 0,5 см ниже уровня выходного отверстия боковой трубки.

Зарядка ионообменной колонки

1 ¾ анализируемый раствор; 2 ¾ катионитовая смола; 3 ¾ стеклянная вата

В случае отсутствия колонки допускается применять обычную бюретку объемом 50 см 3 или делительную воронку объемом 100 -150 см 3 , но при этом необходимо следить за тем, чтобы уровень жидкости всегда был выше слоя катионита.

После 4 — 6 определений или по окончании рабочего дня катионит регенерируют раствором соляной кислоты по п. 11.4.2.1. (в колонке).

Для выяснения возможности продолжения использования колонки без регенерации катионита проводят испытание пропущенного через колонку анализируемого раствора на присутствие ионов кальция. Для этого к раствору после определения оксида серы (VI) добавляют 5 — 6 см 3 щавелевокислого аммония или щавелевой кислоты и раствора аммиака до нейтральной реакции по универсальной индикаторной бумаге. Раствор нагревают. Если раствор остается прозрачным, то колонкой можно продолжать пользоваться. Помутнение раствора указывает на необходимость немедленной регенерации катионита и повторения анализа.

Для регенерации катионита, смешанного с цементом по п. 11.4.3, его предварительно отмывают от цемента водой на сите с размером отверстий 0,2 мм.

11.4.2.3. Установка титра раствора гидроксида натрия по оксиду серы (VI)

Титр устанавливают по раствору соляной или серной кислот. Для этого в три колбы отбирают по 20 см 3 раствора кислоты, титруют раствором гидроксида натрия по метиловому оранжевому (индикатор) до перехода окраски из красной в желтую.

Титр раствора гидроксида натрия ( ) в граммах рассчитывают по формуле

где 20 -объем раствора соляной или серной кислоты, взятый для определения, см3;

0,004 -масса оксида серы (VI), соответствующая 1 см3 раствора соляной или серной кислоты, г;

-среднее арифметическое значение объема раствора гидроксида натрия, пошедшего на титрование, см 3 .

11.4.3. Проведение анализа

Навеску пробы цемента массой 0,5 г помещают в сухой стакан вместимостью 150 см 3 и добавляют при помешивании 25 см 3 воды. Полученную суспензию перемешивают в течение 10 мин, не допуская схватывания цемента.

При наличии в цементе труднорастворимых форм сульфата кальция к суспензии добавляют 3 г катионита в Н-форме, затем 25 см 3 воды и также перемешивают 10 мин.

Раствору, полученному в том или ином случае, дают отстояться до просветления и фильтруют через неплотный фильтр.

При наличии в цементе труднорастворимых форм сульфата кальция возможно также предварительно обрабатывать навеску цемента 20 см 3 раствора гидроксида калия, нагреть до кипения, прокипятить 5 мин и немедленно отфильтровать через фильтр «красная лента».

Нерастворимый остаток промывают раствором борной кислоты, а в случае обработки навески гидроксидом калия — водой. Промывку производят 3 — 4 раза декантацией в стакане и 4 — 5 раз на фильтре.

Через колонку с катионитом пропускают порциями полученный раствор. Элюат собирают в подставленную к отводной трубке коническую колбу вместимостью 250 — 500 см 3 . Скорость его выхода должна быть около 4 см 3 /мин.

После этого катионит промывают водой до исчезновения кислой реакции по индикатору метиловому оранжевому. Полученный после катионного обмена элюат с промывными водами титруют раствором гидроксида натрия по индикатору метиловому оранжевому.

Примечание. Регенерацию колонки при обработке навески гидроксидом калия проводят после каждого определения.

11.4.4. Обработка результатов

Массовую долю оксида серы ( ) в процентах вычисляют по формуле

где -объем раствора гидроксида натрия, пошедший на титрование элюата, см3;

-масса навески пробы, г.

12. Определение оксидов калия и натрия

12.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать значений, указанных в табл. 10 и 11.

Источник

Читайте также:  Кирпич очищенный от штукатурки
Оцените статью