Электропроводимость бетона
Бетон и создаваемый на его основе железобетон на базе фибры или арматуры — основной конструкционный материал, который применяется как в массовом строительстве, так и для решения специфических задач. В последнем случае используются смеси с особыми свойствами как в незатвердевшем состоянии, так и в проектном возрасте. Одной из сфер, которая интересна с точки зрения эксплуатационных возможностей, считается регулирование электрических характеристик бетона.
Оглавление
Проблематика вопроса
В отличие от привычных направлений работы над упрочнением конструкций и увеличением сроков их эксплуатации, электрические свойства бетона пока находят ограниченное применение на практике. При этом многие разработчики уже обратили внимание на сферу создания специальных разновидностей бетона с заранее заданными пределами изменения электрических характеристик. Впрочем, даже исследование электропроводности и других аналогичных свойств традиционных бетонных смесей представляет интерес как с точки зрения их нового применения, так и из соображений прогнозирования стойкости строительных конструкций.
Рисунок 1. Использование электропроводящего бетона в дорожном строительстве
Интерес к указанному направлению исследовательских работ обусловлен широкими возможностями применения бетонов с заранее заданными электрическими характеристиками в строительстве, энергетике и прочих отраслях промышленности. Поэтому сейчас выделяют следующие главные направления исследований электрических свойств бетонов и разработки новых составов смесей:
- изучение электрических свойств применяемых на практике классов бетонных смесей и создание на основе этих знаний новых электроизоляционных бетонов с улучшенными характеристиками удельного электросопротивления и электрической прочности, малыми диэлектрическими потерями и диэлектрической проницаемостью, что важно для безопасности эксплуатации таких конструкций и увеличения срока их службы;
- разработка электропроводных составов с низким удельным электросопротивлением и сохранением стабильных электрических характеристик при изменении условий эксплуатации конструкций.
Все применяемые в технике материалы условно делятся на конструкционные и электротехнические. По технико-экономическим соображениям и из-за специфических механических и физико-химических свойств электротехнические материалы редко используются для решения конструкционных задач. Попытки использовать в конструировании строительных объектов бетоны с заданными электропроводящими или электроизоляционными свойствами предпринимались и ранее, но все они были неудачными. Основной причиной этого являлась нестабильность электрических характеристик, и невозможность их регулирования в заданных пределах.
Поэтому разработка на базе обычного бетона многофункционального материала с высокими конструкционными и заранее заданными необходимыми электрическими свойствами считается важной технической задачей с большими экономическими перспективами.
Поведение бетона при воздействии электрического тока
Традиционный бетон в обычных температурно-влажностных условиях эксплуатации проводит электрический ток, но этим его свойством невозможно управлять и стабильно контролировать. При этом, в современных условиях электропроводность бетона считается негативным свойством, поскольку она вызывает электрокоррозию арматуры в ЖБК под воздействием блуждающих токов.
Иногда электропроводность бетона пытаются использовать с целью заземления строительных конструкций. Такой прием возможен лишь тогда, когда бетон стабильно проводит электрический ток в процессе эксплуатации конструкции. Но вследствие сезонных колебаний влажности и температуры электросопротивление бетона может меняться на несколько порядков. Это явление объясняется ионным характером проводимости бетона. В случае насыщения этого материала водой легкорастворимые компоненты цементного камня переходят в жидкую фазу, что приводит к приобретению им свойств полупроводника с низким удельным электросопротивлением. При испарении влаги сопротивление бетона растет.
Способы регулирования электропроводности бетона
В практике усовершенствования свойств бетона рассматривались разные методы регулирования его электрических характеристик. Большинство из этих способов состоит в предотвращении проникновения влаги в структуру материала и, соответственно, ее влияния на изменение электросопротивления.
Во Франции предлагался «изоляционный бетон Ламберта», в составе которого имеются водные битумные эмульсии, которые заполняют поры в теле бетона, что затрудняет насыщение водой, и, соответственно, обеспечивает стабильное значение электросопротивления. Существует аналогичная технология производства электроизоляционного бетона, которая предполагает его предварительную сушку и покрытие или пропитку различными изоляционными составами. Такой материал применяется для монтажа токоограничивающих бетонных реакторов.
Чтобы повысить электросопротивление бетона для железобетонных шпал, предлагалось вводить в его состав ионно-обменные смолы, связывающие свободные ионы, образующиеся при насыщении бетона влагой. В результате снижалась электропроводность жидкой фазы и всего бетона. Кроме того, изоляционные бетоны предлагалось изготавливать путем замены цементной связки полимерной. Этот метод лег в основу технологии производства электроизоляционных пластобетонов, например, эпоксидного бетона.
Что касается возможностей использования проводящих свойств увлажненного бетона, то подобные технологии получили ограниченное распространение. Это объясняется низкой стойкостью материала при прохождении тока и увеличением электросопротивления при отрицательных температурах, когда вода переходит в твердое состояние.
Ранее для упрощения создания электропроводного материала использовался подход, при котором бетон рассматривали, как электрически однородный объект, и не учитывали в достаточной мере его фазовый и химический состав, макро- и микроструктуру, особенности протекания физико-химических процессов. На современном этапе исследования возможности получения токопроводящих или изоляционных бетонов базируются на других принципах.
При разработке технологии изготовления изоляционных бетонов, учитываются свойства компонентов цементного вяжущего, а также их различных сочетаний. Такой подход позволяет выделить составы, которые в наибольшей степени приближаются к диэлектрикам. Кроме того, ведутся работы в установлении влияния пористости бетона на его изоляционные свойства.
В случае разработки электропроводящих бетонов основное внимание уделяется подбору токопроводящих добавок, изменяющих характеристики материала. Еще одним методом повышения электропроводности считается создание специального композиционного бетона с функциями проводника электрического тока. Результатом этих работ стало создание электропроводящего бетона – бетэла, который может применяться в качестве конструкционного и электротехнического материала.
Характеристики бетэла
Регулирование структуры и фазового состава цементного камня и самого бетона, наряду с применением токопроводящих добавок, считается одним из главных направлений получения бетона с заданными электрическими характеристиками. Это достигается путем правильного выбора исходного заполнителя, вяжущего и добавок, а также созданием оптимальных условий твердения.
Рисунок 3. Принципиальная схема бетэла: 1 – песок (диэлектрик-наполнитель); 2 – электропроводный металлосиликат; 3 – гелевая оболочка; 4 – агрегаты металлического порошка; 5 – агрегаты цемента
При изготовлении бетона может использоваться различная связка, по которой и названы типы материала:
- пластобетон;
- составы на цементном вяжущем;
- полимерцементный бетон.
С точки зрения конструктивной, электрической и экономической эффективности наиболее подходящим считаются составы на цементном вяжущем, поскольку они, кроме высоких технико-экономических и конструктивных показателей, обладают достаточно хорошей дугостойкостью и короностойкостью.
Предварительные исследования электрических и прочностных свойств бетэла показывают, что при его изготовлении можно обеспечить большой диапазон механических и электрических параметров:
- объемный вес: от 1,8 до 2,2 г/см 2 ;
- прочность на растяжение: от 15 до 30 кг/см 2 ;
- прочность на сжатие: от 85 до 250 кг/см 2 ;
- удельное электрическое сопротивление: от 10 до 104 Омсм;
- допустимая плотность тока: от 10 до 0,1 А/см 2 ;
- рабочий диапазон температуры: от 60 до 150 °С;
- допустимая скорость перегрева: 200 °С/с;
- рабочая температура перегрева: 120 °С;
- удельная разрушающая энергия в случае однократного включения токовой нагрузки: от 230 до 300 Втс/см 3 ;
- удельная теплоемкость: 0,22 ккал/г°С;
- удельный объем, при котором происходит рассеивание 1 МВтс энергии при перегреве материала на 1°С: 0,57.
Перспективы применения бетэла
Электропроводящие бетоны характеризуются относительно низкой себестоимостью и технологической доступностью. Только в некоторых случаях их стоимость будет незначительно превышать цену обычных строительных бетонов. Этот факт объясняется использованием при изготовлении электропроводящих бетонных смесей и конечных ЖБК распространенных компонентов (вяжущих, добавок, заполнителей), а также применением освоенных промышленностью технологических процессов.
Бетэл может широко применяться для решения широкого спектра задач в гражданском и сельскохозяйственном строительстве. Например, из него могут изготавливаться панели перекрытий и стен, кровля с внутренним водостоком, полы, фундаменты опор ЛЭП и другие ЖБИ.
Рисунок 4. Электросетевая конструкция из бетона и бетэла: а) ЭК с заземляющей оболочкой из бетона; б) ЭК с нижней частью целиком из бетэла: 1 – бетэл; 2 – арматура; 3 – строительный бетон; 4 – грунт.
При прохождении электротока бетэл, как и всякий другой проводник, подвергается нагреву. Это свойство может использоваться для монтажа электроотопительных элементов зданий. При этом в качестве основных нагревательных элементов можно использовать стандартные плиты перекрытий и стеновые панели, что не требует больших изменений технологической оснастки и конструкций этих элементов.
В случае применения электропроводящего бетона существует возможность замены сложных систем отопления, обеспечивается возможность обеспечения индивидуального микроклимата для жилых помещений, сокращаются сроки монтажа зданий, снижаются эксплуатационные расходы, принципиально изменяются технологии строительства отдельных узлов.
Источник
Почему бьёт током?
Никакого «битья» током нет. Есть ток — течение заряженных частиц.
Вред наносимый током зависит от того насколько сильное течение, измеряется эта величина в Амперах.
Чем больший ток пройдет тем сильнее вред.
Сила тока проходящего через тело — зависит от напряжения и сопротивления тела.
В описанной вами ситуации ток должен идти не только через тело но и через бетон.
Поэтому тут нужно учитывать сопротивление бетона, сопротивление в местах стыков — наиболее плохой контакт и как следствие повышенное сопротивление как раз в местах стыков -ноги на бетоне, кусок бетона в руке.
почему в первом случае бьёт током, если бетон не проводит электричество
Бетон является диэлектриком — веществом очень плохо проводящим ток.
Но это не значит что он не проводит ток — проводит, но не очень хорошо , хотя в некоторых ситуациях вполне достаточно.
К тому же в разных ситуациях его электропроводность может меняться.
Вот к примеру вода- отличный диэлектрик не хуже бетона.
А как показывает практика зачастую она очень неплохо проводит ток 🙂
Чем больший ток пройдет тем сильнее вред.
С чем большей силой ток пройдет, тем больше повреждения
Сила тока проходящего через тело — зависит от напряжения и сопротивления тела.
и от изначальной силы тока, который имеет источник тока?
Вцелом, магия не обьяснена
и от изначальной силы тока, который имеет источник тока?
Скорее дело в различиях контакта человек-бетон.
1. Если стоит босиком на бетоне то площадь контакта большая, и наличие пота с солями вызывает хорошую проводимость.
2. Пальцы рук потеют меньше, да и площадь контакта в сотню раз меньше.
Для чистоты эксперимента нужно попробовать схватиться полной поверхностью ладоней за бетонный столб, который выше обмотан проводом под напряжением. / Это шутка, а не призыв к действию )) /
Про емкость еще забыли -)
Конструкция человек на изолирующих подошвах на бетоном полу — вполне себе конденсатор. Ну а в «проводниках» в процессе заряда протекает ток. чем больше емкость — тем больше интеграл тока по времени = [деструктивная] работа -)
Никакого «битья» током нет. Есть ток — течение заряженных частиц.
Артем, без обид, но ты как 13-и летняя девочка. Есть битье током. Если не веришь, то сунь пальцы в розетку. А как ты со своих 13 лет это называешь — это все-равно. Во всем мире это принято называть «битье током».
Это был риторический ответ.
mureevms: Если сунуть пальцы в розетку ничего не произойдет — пальцы не достанут до металлических частей, розетки специально так сконструированы.
По поводу битья током — есть поражение током, разрушения вызванные проходящим током. Это не удары, не битье, это банальный нагрев.
Так же есть такая штука как сокращение мышц при прохождении через них тока, это еще Луиджи Гальвани подметил.
Поэтому если ток будет переменным как в бытовой сети — мышцы будут сокращаться с частотой 50Гц и человек будет довольно заметно трястись.
АртемЪ: Очень плохо объяснили. Ибо вода — диэлектрик. В любом виде диэлектрик. Хоть пар, хоть лёд. Хоть жидкость. Хоть небо. А вот солёная вода — очень даже электролит, очень даже проводник. Да, сопротивление у обычной речной воды будь здоров, но ток она проводит. Равно и как и бутилированная вода. А вот дистилят не проводит ток. Вот хоть убей, не будет он проводить пока не посолишь. Ну это так, придирки.
И да, убивает не ток, а мощность. Под некоторым «но», дело в том, что даже разряд невысокой мощности может остановить сердце. C’est la vie. В остальном, если имеется ввиду именно обгореть, то без мощности здесь не обойтись, а зависит она, внезапно, источника. То есть, если взять генератор на пару киловатт, прикрутить к нему хомяка с колесом, то как ни берись за оголённые провода, ничего не будет. Вернее будет: или хомяк не сможет колесо прокрутить или напряжение резко упадёт почти до нуля. Поэтому, критичным, является минимизация времени контакта, к слову. Путаница связана с тем, что всё со всем связано, ибо напряжение подаётся источником, а ток зависит от цепи. Да и нагрузить несколько киловатт на розетку современным электростанциям ничего не стоит, они даже не почувствуют, что человека убили 😉
Ответ на вопрос намного проще — заряд. Да, человек имеет ёмкость. Конденсатор он образует поскольку постольку, ибо для нормальный конденсатор это всё таки тонкий диэлектрик, а между бетоном и землёй довольно много места. Нет, бетон тут не причём, просто в человеке оказывается мало заряда, а на проводнике его много. В момент контакта он резко заряжает человека, а с точки зрения физики возникает ток утечки, от чего внезапно становится немного больно, но в целом это лишь сиюминутная радость. Разрядки практически не происходит, то есть заряд колебаться будет, но очень слабо, так как бетон является плохой землёй.
Вот что точно не стоит, так это действительно образовывать конденсатор. То есть браться двумя руками за концы. Не самая лучшая идея, тем более что кондер может и пробить =)
АртемЪ: Гхм. Не знаю, какой смысл путать тёплое с мягким. Ещё раз. Вода — диэлектрик и точка. Ну не проводит она ток. Проводят ионы солей, растворённых в воде. Это концептуально, мы не во дворе болтаем о физике 7 класса, вроде бы ресурс должен помогать, а не загонять в угол.
От того, что цепь с переменным током особо ничего не меняется. Переменный ток это лишь качественный параметр бытовой и промышленной сетей, время контакта убивает, потому что тепло выделяется по закону Джоуля-Ленца. А каша в том, что все эти величины весьма зависимы. Но я не знаю как по другому объяснить тот факт, что убивает именно тепло.
Deerenaros: Я вроде русским языком написал что вода является диэлектриком.
И тут приходите вы и начинаете доказывать что она является диэлектриком.
Зачем доказывать мне то что я и так знаю?
Но я не знаю как по другому объяснить тот факт, что убивает именно тепло.
Но это не значит что он не проводит ток — проводит, но не очень хорошо , хотя в некоторых ситуациях вполне достаточно.
Вот к примеру вода- отличный диэлектрик не хуже бетона.
А как показывает практика зачастую она очень неплохо проводит ток 🙂
А как показывает практика зачастую она очень неплохо проводит ток 🙂
весьма и весьма скверно, потому что для детской научно-популярной телепередачи это может быть ОК, ибо объяснять ребёнку про кислоты, соли, ионы, растворители — немного не есть годная идея. Но на таком ресурсе, как по мне, непозволительная роскошь прятать чрезвычайно важные детали в завуалированных «как показывает практика». Нет, практика не это показывает. Это безграмотно.
И ладно бы просто задели. Так имеете свойство продолжать.
И да, убивает не ток, а мощность. Под некоторым «но», дело в том, что даже разряд невысокой мощности может остановить сердце. C’est la vie.
Человеческий организм управляется электрическими импульсами.
Пропустите ток через мышцу и она сократится.
Пропустите ток через сердечную мышцу она тоже сократится.
Ну и не только сердце, там еще и на нервную систему действует.
И тут тепло никакого влияния не оказывает.
Вообще говоря, если тепло не разрушило структуру мозга (а такое весьма может быть), тогда максимум что можно обрести — это амнезию (и то, возможно здесь также теплота разрушает, ибо современные ЭСТ-аппараты, генерирующие короткие импульсы реже вызывают потерю памяти).
Короче, не знаю к чему всё это было. Я банально указал на ошибку, тогда как вы ещё раз дважды ошиблись. После чего снова дважды ошиблись, дважды серьёзно недоговорили (возможно и к лучшему), и один раз пришли к неправильным выводам. К чему это? Надеюсь, вопрос риторический.
организм не управляется электрическими импульсами.
Если через мышцу пропустить ток — она сократится, это предсказуемое действие, следовательно можно управлять мышцей пропуская через нее ток. Поэтому — организм человека прекрасно управляется электрическими импульсами.
Размешивая соль в воде мы больше не имеем воду
Что за чушь? Вы слышали что во всех океанах электролит, как и в реках, озерах и прочих водоемах? И продают конечно же бутилированный электролит для питья?
Вода — везде вода. Просто недостаточно чистая химически, и в некоторых ситуациях можно сказать что она является электролитом, но тем не менее это вода. И она проводит ток.
Хотя чистая вода ток не проводит — но такой воды к сожалению в природе не встретишь, да и в лаборатории приготовить крайне сложно — на грани фантастики, ибо вода является отличным растворителем.
Она не сократится. А пустится в судороги
Согласно словарю судороги это непроизвольные сокращения мышц;
Поэтому она сократится, если ток пропустить несколько раз — она сократится несколько раз, вот тогда можно сказать это будут судороги.
В итоге — вы пытаетесь придираться к словам, но у вас это плохо получается.
Источник