Светоотверждаемый цемент с фтором

Современные Светоотверждаемые Композитные Пломбировочные Материалы

Современные светоотверждаемые композитные пломбировочные материалы занимают значительное место в практике как начинающего, так и опытного врача — стоматолога. На стоматологическом рынке представителей светооверждаемых композитов очень много. И здесь немало важно помнить не только о технике работы с композитом, но и форме частиц, наполненности,но и,конечно же, цели, с которой будет использоваться светоотверждаемый композит.

Светоотверждаемый композит имеет несколько синонимов – это и гелиоотверждаемый композит, и фотоотверждаемый композит. Состав композита как бы от названия не меняется.

Нужно запомнить то, что фотоотверждаемый композит состоит из матрицы органической и наполнителя – это основной состав. Кроме этого композит светоотверждаемый имеет инициатора отверждения, активатора отверждения, различные пигменты, добавки, стабилизаторы. Органической матрицей в составе композита является Bis-GMA, TEGDMA, UDMA. Наполнитель – это представитель неорганической матрицы, в состав которой входят оксиды кремния, бария, алюминия, стронция и тд. Между всеми этими наполнителями располагаются кремнийорганические соединения, которые относят к группе межсиланового наполнителя. Активатором отверждения для фотоотверждаемых композитов является свет, длиной волны равной 400-450 нм.

Под действием света происходит активация камфорохинона, и начинает происходить необратимая реакция между органическим и неорганическим наполнителями композита. В принципе этот механизм лежит в основе того, почему пломбы затвердевают.

Классификация композитов

Классификация композитов достаточно объемна и включает в себя следующие пункты:

  • Классификация композитов по размерам частиц;
  • Классификация композитов по составу полимерной матрицы;
  • Классификация композитов по вязкости;

А теперь остановимся на каждой группе композитов более подробно.

Классификация композитов по размерам частиц разделяет композиты на:

  • Макронаполненные композиты;
  • Микронаполненные композиты;
  • Гибридные композиты;
  • Микрогибридные композиты;
  • Нанокомпозиты.

Макронаполненные композиты

Макронаполненные композиты являются, если можно так сказать, «отцами» всех композитов. Так как на рынке стоматологических материалов именно макронаполненные композиты были представлены первыми.

Макронаполненные композитные материалы характеризуются большим размером частиц, цифры варьируют от 8 – 12 мкм, средний размер частиц макронаполненного композита около 10 мкм. Кроме больших размеров частиц макронаполненного композита, частицы эти имееют нерегулярную, неточную форму. Наполненнность макранаполненного композита близится к 60%, но не взирая на такие хорошие физические свойства, макранаполненный композит обладает низкой устойчивостью к износу. При воздействии сильных жевательных нагрузок просто – напросто из матрицы макронаполненного композита выпадают молекулы органического наполнителя, и, естественно, образуются пустоты. Вследствие потери наполнителя теряется стабильность поверхностного слоя материала. Так же к минусам макронаполненных композитов следует отнести чрезмерное влияние на твердые ткани зубов – антагонистов, это приводит к преждевременному стиранию. Недостаточные положительные характеристики отмечаются и при полировании, и цветостойкости макронаполненного композита. Из плюсов использования макронаполненных композитов можно сказать то, что это рентгеноконтрастный материал и прочный композитный материал, поэтому используется для восстановления культей зубов.

Микронаполненные композиты

Микронаполненные композиты дали возможность стоматологом видеть, как хорошо можно подобрать пломбу в цвет зуба, как она блестит при качественной полировке. Микранаполненные композиты имеют размер частиц равный 0,01 – 0,1 мкм, наполненность составляет 55% от общего объема. Из – за недостаточной наполненности микранаполненнных композитов, они имеют ряд негативных качеств. В первую очередь микранаполненные композитные материалы являются низкопрочными, то есть не пригодными для восстановления 1 и 2 классов по Блэку. Кроме этого микранаполненные композитные материалы нерентгеноконтрастны, не обладают гидрофобностью, имеют высокий коэффициент теплового расширения.

Самым большим плюсом для этих материалов является их качественная полировка и блеск. Кроме этого к плюсам микранаполненных композитов можно отнести то, что у них высокий показатель эластичности. Простыми словами из – за собственной природной эластичности микранаполненные композиты компенсируют напряжение, создаваемое на границе адгезив – пломбировочный материал. Микранаполненные композитные материалы используются для восстановления дефекта твердых тканей зуба в пришеечной области, а так же могут использоваться в качестве дополнительного слоя при использовании других композитных материалов (техника «слоеная реставрация»).

Гибридные композиты

Гибридные композитные материалы отличаются тем, что в самом материале нет частиц одинаковых рамеров. Гибридные композиты включают в свой состав частицы размером от 0, 01 мкм до 10 мкм. Наполненность гибридных материалов тоже вариабильна, составляет от 50% до 70% по объему.

Гибридные композиты являются как бы границей между ранее описанными макро/микранаполненными композитами, где негативных характеристик больше, чем положительных, и микрогибридными композитами, которые в настоящее время не теряют своей популярности в практике врачей – стоматологов.

Микрогибридные композиты

Как я описывала ранее, микрогибридные композиты – одни из самых популярных видов композита в современном стоматологическом мире. И неспроста. Именно с микрогибридных композитов начался этап в использовании адгезивной техники реставрации зубов.

Микрогибридные композиты характеризуются размерами частиц, приближающимися к сферической форме, размером около 1 мкм. Кроме таких мелких частиц в составе микрогибридного композита есть частицы, размер которых достигает 3,5 мкм.

Микрогибридные композиты включают положительные свойства, такие как:

  • Прочность;
  • Низкое водопоглощение;
  • Устойчивость к отлому;
  • Хорошие эстетические свойства, что позволяет подобрать качественный пломбировочный материал не только по цвету, но и по прозрачности;
  • Хорошая полируемость;
  • Ретгеноконтрастность.

Микрогибридный композит не является идеальным композитным материалом, так как данный композит обладает полимеризационной усадкой, которая может достигнуть 3,5% от объема.

Микрогибридные пломбировочные материалы используются врачами – стоматологами достаточно широко не только в терапевтической стоматологии, но и ортопедии.

Показаниями к использованию микрогибридных композитов могут быть:

  • Реставрация полостей 1 -5 класса по Блэку;
  • Для изготовления мостовидных протезов, если дефект не очень протяженный;
  • Формирование культи зуба;
  • Шинирование зуба;
  • Починка ортопедических конструкций из керамики либо же пластмассы;
  • Вкладки, виниры.

Следовательно, можно сказать, что микрогибридные композиты – это универсальные композиты, которые могут использоваться в стоматологии для реставрационной терапии, однако следует помнить об усадке данного композита и о требовательной работе.

Нанокомпозиты

Нанокомпозиты — достаточно новый класс композитных материалов в стоматологии. Сама частица «нана» указывает на рамер наполнителя – 10-9 степени. Данная величина ооооооочень маленькая и зачастую сравнивается с атомом.

Нанокомпозиты характеризуются не только маленькими частицами ( для понимания или же сравнения с микрогибридными композитами 0, 01 мкм = 10 нм), но и хорошей наполненностью около 75% от объема. Из этого вытекают плюсы нанокомпозитов:

  • Прочный композит;
  • Низкая усадка (максимум 2,3%);
  • Хорошая эстетика композита;
  • Полировка;
  • Длительный блеск после качественной полировки;

На нанокомпозитах заканчивается классическое представление о композитных материалах, которые могут применяться в стоматологии. Чтобы добиться идеальных как физических, так и эстетических свойств, постоянно композиты модифицировались и сочетались с другими материалами. Так на стоматологический рынок вышли ормокеры, силораны, компомеры, гиомеры.

Ормокеры

Ормокеры – это ОРганическая МОдифицированная КЕРАмика. Данный вид материалов состоит из частиц – бариевое стекло, фторапатит, который составляют органическую матрицу. Рамер частиц в ормокерах достигает до 1,7 мкм. Ормокеры хорошо наполнены до 70% по объему. Ормокеры обладают хорошей прочностью, в некоторых источниках литературы даже рекомендуют использовать ормокеры у пациентов с аллергией на композиты, однако подтвержденных клинических случаев нет. К положительным свойствам ормокеров, что приводит к использованию их в реставрации любых классов по Блэку, следует отнести:

  • Хорошая прочность;
  • Минимальная усадка;
  • Износостойкость;
  • Эстетика;
  • Полируемость.

Однако по своему применению ормокеры уступают микрогибридным композитам.

Силораны

Силораны являются представителями веществ новой эры в стоматологии. В снове силоранов лежат вещества, используемые в химической промышленности. Однако этот материал отличается своей хорошей биосовместимостью, низкой усадкой, износостойкостью. Силораны имеют удобное рабочее время, котрое доходит до 9 минут при наличии общего освещения.

Силораны используются для восстановления 1 – 2 класса по Блеку. Есть некоторые нюансы в работе с силоранами. Первое – это необходимость в постановке прокладки; второе – это несомвестимость с адгезивными системами компомеров и жидкотекучих композитов. Однако в работе силораны приятны: не липнут к инстурменту, хорошо пакуются и полируются.

На данный момент времени, к сожалению, нет отдаленных клинических результатов с использованием силоранов, но перспектива у данной группы материалов неплохая!

Компомеры

Компомеры – это дуэт композита и стеклоиномерного цемента. Данная группа материалов объединяет свойства как композита, так и СИЦа. Механизм отверждения компомеров описывается как каскад, где сперва под действием света происходит полимеризация, а потом под действием воды активируется кислотно – основная реакция, характерная для цемента.

Компомеры обладают следующими свойствами:

  • Эластичный пломбировочный материал;
  • Выделение фтора;
  • Нетребовательный к условиям работы: может вносится большой порцией, не требует тщательной изоляции от воды, можно пропустить этап протравливания;
  • Меньше реагирует на конкретно направленные лучи полимеризационной лампы.

С такими свойствами компомер используется для восстановления 3, 5 классов по Блэку, реставрации на молочных зубах, герметизация фиссур.

Гиомеры

Гиомеры являются усовершенствованием гибридных материалов. Гиомеры, как и компомеры, включают в свой состав композит и стеклоиномерный цемент.

Гиомеры – это материал, который обладает хорошими физическими свойствами, прост в работе, так как внесение в полость зуба возможно одной порцией.

Уникальностью гиомеров является не только то, что они способны выделять фтор определенный промежуток времени, но и препятствовать образованию зубного налета на поверхности пломбы.

При использовании гиомеров получаются естественные и эстетические реставрации.

Конечно, материаловедение не стоит на месте, и любой производитель композитов стремится к созданию идеального и универсального композита, но такого еще нет. Поэтому при выборе композитного материала следует обращать внимание на соотношение «цена – качество», цель использования композита и результат, который хочется наблюдать после работы.

Источник

Стеклоиономерные цементы (стеклоиономеры)

Стеклоиономерные цементы (СИЦ) целый класс современных стоматологических материалов, созданных путем объединения свойств силикатных и полиакриловых систем. Пломбирование зубов с применением стеклоиономерных цементов постепенно вытесняет из стоматологической практики цинк-фосфатные и цинк-поликарбоксилатные цементы. Классификацию стеклоиономерных цементов принято проводить по ряду признаков.

По их применению. Для постоянных пломб (эстетические, упроченные), быстротвердеющие (для прокладок, герметизации фиссур), для пломбирования корневых каналов, для фиксации ортопедических конструкций.

    По форме выпуска:

  • порошок-жидкость (порошок – мелкодисперсное алюмофторсиликатное стекло с различными добавками, жидкость – водный раствор сополимера карбоновых кислот с добавкой винной кислоты);
  • порошок (все компоненты находятся в порошке, который замешивается на дистиллированной воде; т.н. Аквацементы);
  • капсулы (порошок и жидкость рафасованы в капсулы с тонкой перегородкой в необходимом соотношении, поэтому при смешивании получается стеклоиономерный цемент с оптимальными свойствами);
  • паста (в тубах или шприцах); не требуют замешивания и отвердевают при облучении галогеновой лампой.
  • В зависимости от химического состава механизма отвердения.

    1. Классические (порошок-жидкость). Порошок мелкодисперсноеалюмофторсиликатное стекло (размеры частиц 20-50 мкм). Компоненты порошка: диоксид кремния, оксид алюминия, фторид кальция, фториды других металлов (обеспечивающие фторвыделение для профилактики кариеса), фосфат алюминия (обеспечивает прочность и устойчивость к истиранию), соли бария, цинка, стронция и др. (обеспечивают рентгеноконтрастность). Жидкость – водный раствор сополимера поликарбоновых кислот (акриловой, итаконовой, малеиновой) с добавкой изомера винной кислоты. В случае Аква-цементов (только порошок, который замешивается на дистиллированной воде) поликарбоновые кислоты входят в состав исходного порошка в виде кристаллов. В металлосодержащих стеклоиономерных цементах в состав порошка дополнительно вводятся металлические добавки и сплавы (серебро-олово, серебро-палладий). Отвердение классических стеклоиономерных цементов происходит по типу ионообменной реакции (отсюда название – стеклоиономер): ионы водорода (присутствующие в водном растворе поликарбоновых кислот) обмениваются с ионами металлов (кальция, алюминия) стекла, ионы кальция и алюминия связывают гидроксильные группы цепей поликарбоновых кислот (образуется матрица полиакрилата металла, в которой расположены непрореагировавшие частицы стекла). В начальной стадии отвердения достаточно быстро формируются кальциевые полиакриловые цепочки. Эта реакция обеспечивает схватывание цемента и длится несколько минут. Однако эффективность связывания ионами кальция недостаточно высокая и на ранних стадиях отвердевания кальций-полиакриловые цепочки могут растворяться в воде (поэтому цемент должен быть на это время защищен от влаги). Когда ионы кальция прореагировали, вступают в реакцию ионы алюминия и формируются алюминий-полиакриловые цепочки. Трехвалентная природа алюминия (в отличие от двухвалентной кальция) обеспечивает более высокую степень поперечного сшивания и образование пространственной структуры. Именно на этом этапе происходит формирование окончательной матрицы цемента. Завершение второй фазы наступает примерно через 2-3 недели (ускорить процесс отвердения позволяет применение гибридных стеклоиономеров, которые уже на начальном этапе фотополимеризации в течение ок. 40 сек набирают достаточную прочность). Дополнительно на поверхности стеклянных частиц происходит образование силикагеля (прочная структура). В итоге окончательная структура отвердевшего стеклоиономерного цемента представляет собой частицы стекла, окруженные силикагелем и расположенные в матрице поперечносшитых молекул поликарбоновых кислот (полиакрилата металла).
    2. Гибридные стеклоиономерные цементы (стеклоиономерные цементы, модифицированные полимером). Имеют двойной (химический и световой) или тройной механизм отвердевания. Порошок – мелкодисперсное алюмосиликатное стекло (как и в случае классических стеклоиономерных цементов), иногда с добавками кристаллов сополимера поликарбоновых кислот (как и в случае Аква-цементов). Жидкость – водный раствор сополимера поликарбоновых кислот (акриловой, итаконовой, малеиновой), концы молекул которых модифицированы присоединением ненасыщенных метакрилатных групп (как у диметакрилатов композитных пломбировочных материалов). В состав жидкости входит также винная кислота, гидроксиэтилметакрилат и камфарохинон (фотоинициатор). Первой стадией механизма отвердения является реакция связывания концевых ненасыщенных метакрилатных групп поликарбоновых кислот за счет фотоинициированного образования концевых радикалов (фотополимеризация). Вторая стадия – обычная классическая реакция сшивания макромолекул поликислот ионами металлов. Гибридные стеклоиономерные цементы (с двойным механизмом отверждения) имеют улучшенные физико-химические качества, но и существенный недостаток: в участках, недоступных для проникновения света фотополимеризующей лампы, отвердение происходит только за счет классической химической реакции (что сказывается на физико-химических характеристиках стеклоиономерных цементов). Этого недостатка лишены стеклоиономерные цементы с тройным механизмом отверждения (первые две стадии – как у стеклоиономерных цементов двойного отверждения, а третья стадия – каталитически инициированная полимеризация концевых метакрилатных групп поликарбоновых кислот без воздействия света).

    Указанная классификация условна, поскольку в последнее время появилось много модифицированных стеклоиономерных цементов: с добавками полимерных смол, со специально обработанными мелкодисперсными частицами стекла и т.д.

    Очень важное достоинство стеклоиономерных цементов – хорошая химическая адгезия к тканям зуба. Считается, что это происходит вследствие образования хелатных связей между гидроксильными группами поликарбоновых кислот и ионами кальция поверхностного гидроксиапатита (аналогично классической химической реакции сшивания при отвердении стеклоиономерных цементов), а также вследствие образования водородных связей карбоксилатных групп с коллагеном (органический компонент зубных тканей).

    Среди других достоинств стеклоиономерных цементов – хорошая химическая адгезия к другим пломбировочным материалам (в т.ч. композитам), высокая биологическая совместимость с тканями зуба, близкие к тканям зуба характеристики теплового расширения (что предохраняет от нарушения краевого прилегания пломб), низкий модуль упругости (что позволяет использовать стеклоиономерные цементы в качестве прокладок или базы под реставрацию зубов композитными материалами).

    Стеклоиономерные цементы обладают биоактивностью, что связано не только с химической адгезией к структурам зуба, но и с продолжительным фторвыделением и выделением других ионов (алюминия, кальция, стронция; способствуют реминерализации структур зуба при кариозном поражении). Все остальные реставрационные материалы (например, композиты) не являются биоактивными и служат только для восстановления формы и эстетики зуба. В начальный период (около 2-х суток) отвердения стеклоиономерных цементов происходит быстрое высвобождение ионов фтора, которые остаются свободными в пределах стеклоиономерной матрицы. Свободное движение (диффузия) ионов фтора обусловлено тем, что они структурно не связаны с матрицей цемента с способны к миграции в полость рта и в ткани зуба, смежные с реставрацией (пломбой), оказывая при этом кариесостатическое и антибактериальное действие. Выделение ионов фтора (в меньших количествах) происходит и в дальнейшем в течение длительного периода (пролонгированный процесс, более 1 года). Диффузия ионов фтора в дентин и эмаль вызывает усиление минерализации твердых тканей зуба, уменьшение проницаемости дентина, реминерализацию начальных кариозных повреждений и остановку или замедление оставшегося кариозного процесса. Твердая ткань под стеклоиономерным цементом оказывается более плотной, гиперминерализованной. Кроме того, стеклоиономерные цементы способны адсорбировать (поглощать) ионы фтора при контакте с фторсодержащими материалами (зубными пастами, гелями, растворами для полосканий), что приводит к повторному обогащению стеклоиономерной реставрации (пломбы) ионами фтора. Поступившие ионы фтора затем медленно высвобождаются в полость рта и ткани зуба, смежные с реставрацией (пломбой). Таким образом, стеклоиономерный цемент действует как резервуар (депо) ионов фтора. В последние годы стеклоиономерные цементы все чаще используют для герметизации фиссур (в первую очередь – вследствие реминерализующего действия на эмаль в области фиссуры за счет фторовыделения).

    Типичными представителями современных стеклоиономерных цементов являются следующие.

    Фуджи Плюс (Fuji Plus) – усиленный композитом стеклоиономерный цемент. Используют для постоянного цементирования металлических, металлокерамических и металлокомпозитных коронок и мостовидных протезов, вкладок и накладок из композитов, керамики и стоматологических сплавов.

    Фуджи I (Fuji I) – стеклоиономерный цемент для постоянного цементирования ортопедических коронок, мостовидных протезов, вкладок, накладок из любых стоматологических сплавов.

    Фуджи IX (Фуджи 9, Fuji IX) – классический стеклоиономерный реставрационный (пломбировочный) цемент пакуемой вязкости (термин “пакуемый” означает сохранение формы, приданной материалу еще до стадии его отверждения, что позволяет врачу-стоматологу легко выполнять этап предварительного моделирования). Вследствие высокой устойчивости к истиранию применяют для реставраций (пломбирования) в области жевательных зубов, реконструкции коронковой части зуба.

    Фуджи Лайн (Fuji Lining) – светоотверждаемый стеклоиономерный цемент. Имеет низкую усадку при отвердевании, поэтому используют в качестве изолирующей прокладки.

    Ионозит бейслайн (Ionosit Baseliner) – светоотверждаемый гибридный стеклоиономерный цемент (чаще относят к компомерам). Однокомпонентный материал, который при отверждении слегка расширяется и поэтому используется в качестве изолирующей прокладки, компенсирующей полимеризационную усадку композитов. По физическим свойствам приблизительно в 3 раза прочнее, чем традиционные стеклоиономерные цементы.

    ТаймЛайн (TimeLine) – светоотверждаемый стеклоиономерный материал. Используют в качестве изолирующей прокладки под композитные пломбы (реставрации).

    Кор Макс (CORE MAX) – стеклоиономерный цемент, усиленный композитом (иногда относят к композитам химического отверждения). Особо прочный цемент для восстановления коронковой части зуба с использованием штифтов. Релайкс Леи (RelyX LUTING) – гибридный стеклоиономерный цемент химического отверждения. Используют для постоянного цементирования ортопедических коронок, вкладок из керамики, металлов, композитов, цементирования мостовидных протезов, корневых штифтов. Ионосил (Ionoseal) – светоотверждаемый стеклоиономерный цемент. Отличается высокой прочностью на разрыв и устойчивостью к сжатию. Используют для изолирующих прокладок (имеет хорошую адгезию к композитным материалам). Витремер (Vitremer) – эстетичный гибридный стеклоиономерный материал с тройным механизмом отверждения (светополимеризация, химическая полимеризация, классическая стеклоиономерная реакция). Используют для восстановления коронковой части зуба под протезирование, эстетического пломбирования и реставрации.

    Сияющая голливудская улыбка от ведущих специалистов терапевтической стоматологии. Запишитесь на прием!

    Источник

    Читайте также:  Какие материалы нужны для отделки стены
    Оцените статью